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Abstract

We examine the extent to which level-k analysis provides evidence of bounded reasoning in games.
Our opening example exhibits a game in which, regardless of the anchor used to initiate the level-k
reasoning process, a particular strategy is at most level 1. At the same time, this strategy is consistent
with rationality and (m — 1)th-order belief in rationality (R(m —1)BR) for all integers m. The example
suggests that the categorization of strategies by the level-k model may overestimate the extent of
bounded reasoning on the part of players. However, there is an implicit identification assumption
underneath this claim, albeit one standard in epistemic game theory. This is the assumption of a “rich”
epistemic type structure that encodes many (sometimes, all) hierarchies of beliefs for the players. It
is this assumption that allows us to say that play of an m-rationalizable strategy is consistent with
R(m —1)BR. Our next result concerns the implications of a suitable identification assumption for level-
k analysis. Specifically, we build what we call a “complete level-k type structure” — that encodes the
presence of an anchor on which players build their hierarchies of beliefs, and no further restriction. One
might conjecture that, in this case, the condition of R(m — 1)BR would isolate the level-m strategies.
Our main theorem shows that this is false: R(m — 1)BR in a complete level-k type structure once
again returns all m-rationalizable strategies. Finally, we find an additional identifying assumption
under which epistemic analysis does deliver level-k strategies, and we also assess the verifiability of this

assumption.

The Level-k (Nagel, 1995; Stahl and Wilson, 1994, 1995; Costa-Gomes, Crawford and Broseta, 2001;
Costa-Gomes and Crawford, 2006) and the related cognitive hierarchy (Camerer, Ho and Chong, 2004)
models have played an instrumental role in behavioral game theory. They have gained prominence pre-
cisely because of their ability to explain departures from equilibrium in both experimental data and in
applications. At the same time, these models have come to serve as a lens through which experimenters
have assessed players’ reasoning—and bounded reasoning—in games.

This paper revisits the claim that the categorization of levels, as offered by the level-k literature, can

provide direct information about how players reason—be it reasoning about rationality, reasoning about
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irrationality, reasoning about unsophisticated behavior, depths of reasoning or steps in reasoning. It argues
that the current interpretation of the level-k model overestimates the extent to which there is evidence of
“bounded reasoning” in experimental data.

To make this point, we focus on the basic level-k model. That analysis begins with what is called an
anchor, i.e., an exogenous distribution about how the game is played. The anchor is associated with a
distribution of so-called level-0 behavior. A level-1 player has a belief that corresponds to the anchor and
plays a best response given that belief. The strategies that are a best response to such a belief correspond
to level-1 behavior. A level-2 player has a belief that assigns probability 1 to level-1 behavior and plays a
best response given such a belief. And so on.

To understand our approach, begin with a known result:

Baseline Result: Fix an anchor. If there is a & > 1 so that a strategy is classified as
level k for that anchor, then the same strategy is k-rationalizable, i.e., survives k rounds of

rationalizability.

See, e.g., Costa-Gomes and Crawford (2006, pp. 1739) and Schipper and Zhou (2024, Proposition 1). As a
consequence of this result, if a strategy is classified as level k, then there is an m > k so that the strategy is
m-rationalizable. (Note, the strategy is k-rationalizable and so m-rationalizable for some m > k.) Standard
results in epistemic game theory establish that a strategy is m-rationalizable if and only if it is consistent
with rationality and (m — 1) -order belief of rationality (R(m—1)BR). See, e.g., Brandenburger and Dekel
(1987) and Tan and Werlang (1988). Thus, if a strategy is classified as level k then there is an m > k so
that the strategy is consistent with R(m — 1)BR.

The baseline result points to a preliminary approach for relating the categorization from the level-k

model to steps of reasoning about rationality:

If a strategy is classified as level k and there is no m > k so that the strategy is m-rationalizable,
then the strategy is consistent with R(k — 1)BR but is inconsistent with RmBR for all m > k.
Thus, a level of k captures the maximum level of reasoning about rationality consistent with
the data.

However, there are many examples where a strategy is classified as level k, despite the fact that the
strategy is consistent with m-rationalizability for m > k. This can occur because the strategy is, in fact,
also classified as level m > k for the same anchor. (See, e.g., Example 1 in Schipper and Zhou, 2024.) Or,
it can occur because the strategy is classified as level m > k for a different anchor. But, importantly, it can
also occur even if, for every possible anchor, the strategy is classified as at most level k. Section 1 provides
such an example. The example features a strategy that can be classified as level 1, for an appropriate
anchor. However, for any anchor, the strategy cannot be classified as level k > 2, despite the fact that it
is consistent with rationality and common belief of rationality.

This last paragraph already suggests that the categorization given by the level-k model may overestimate
the extent of bounded reasoning: If a strategy is consistent with RmBR, then it is consistent with (m+1)-
steps of reasoning about rationality. But it may also be consistent with (m + 1)-steps of reasoning about
rationality and subsequent steps of reasoning about irrationality. And, similarly, if a strategy is consistent
with RmBR, then it is also consistent with (m + 1) steps of interactive reasoning, e.g., reasoning through
sentences of the form “I think, you think, ....”

That said, this conclusion rests on a particular identification assumption. To better understand the

assumption, return to the statement that any m-rationalizable strategy is consistent with R(m — 1)BR.



There is an important background assumption: that players have a “rich” set of hierarchies of beliefs. The
implicit identification assumption is that the analyst cannot rule out hierarchies of beliefs. If the analyst
knew that the players themselves rule out certain hierarchies of beliefs, then the predictions of R(m —1)BR
may well be a strict subset of the m-rationalizable strategies. (See Chapter 7 in Battigalli, Friedenberg
and Siniscalchi, 2012 for examples.)

This implicit identification assumption is important for the level-k model. In the level-k model, the
analyst deliberately chooses an anchor and admits only hierarchies of beliefs that are faithful to the anchor.
The choice of the anchor (and so hierarchies) can rest on substantive arguments, such as which behavior
is viewed as salient in a particular setting. Or the analyst may hypothesize that hierarchies are faithful to
some anchor and attempt to estimate the anchor. In either case, the analyst hypothesizes that players rule
out hierarchies of beliefs inconsistent with the anchor.

With this in mind, we focus on a restricted inference problem, one where the analyst has an auxiliary
assumption that hierarchies of beliefs are faithful to an anchor. To formalize this inference problem, we
follow the approach in the epistemic game theory literature by modeling players beliefs with an epistemic
type structure. We focus on a class of such type structures, which we call level-k type structures. These
are type structures where players’ hierarchies of beliefs are generated by an anchor. An important level-k
type structure is, what we call, a complete level-k type structure. This is a level-k type structure that
induces a rich set of beliefs that are consistent with the anchor; in a sense, it is a type structure that does
not impose substantive restrictions on beliefs that go above and beyond the restrictions that stem from
the anchor. (See Sections 3.2 and 8.A.)

Level-k type structures are engineered to mimic the logic of the level-k model. Despite this fact, in a
complete level-k type structure, the predictions of R(m — 1)BR are exactly the m-rationalizable strategies.
(See Theorem 6.1.) Note, this is irrespective of the particular anchor that generates the complete level-k
type structure. The result has important implications for the restricted inference problem: For a particular
anchor, a strategy can be categorized as level k (but not level m > k + 1); yet, there may be an m > k
so that the same strategy is consistent with RmBR, even when hierarchies of beliefs are required to be
consistent with the very same anchor.

Why is there a disconnect between the R(m — 1)BR predictions in a complete level-k type structure and
the categorization from the level-k analysis? The key is that the level-k model only imposes an exogenous
restriction on the players’ partial hierarchies of beliefs. To better understand what this involves, consider
a level-2 player, who has a belief that other players have a belief (about play) that corresponds to the
anchor. This is distribution on the set of first-order beliefs—i.e., a distribution on what others believe
about the play of the game. A second-order belief, however, is a joint distribution about the strategies and
first-order beliefs—i.e., a joint distribution about how others play the game and what they believe about
the play of the game. The level-k model obtains the full second-order belief endogenously, through the
solution concept. In doing so, it imposes an auxiliary requirement that a player cannot rationalize different
strategies played by different first-order beliefs. Indeed, in a complete level-k type structure, there will
be types that mimic such level-2 players, called 2-types, and those types will not be able to rationalize
different strategies played with different first-order beliefs. However, there will be other types—types that
are consistent with the partial hierarchies of beliefs induced by the anchor—which can rationalize different
strategies played with different first-order beliefs. That is, by explicitly modeling the hierarchies of beliefs
consistent with the anchor, we can see that there is a richer set of m‘"-order beliefs that are consistent

with the anchor.



This raises the question: Are there different epistemic assumptions so that the predictions of round k
correspond exactly to the categorization of level k? If so, those assumptions would provide a sense in which
the categorization of a subject as level k£ does correspond to k steps of reasoning. Theorem 6.1 provides an
answer in the affirmative. On the plus side, the logic behind the result mimics the logic associated with the
level-k model, suggesting that our approach (throughout this paper) is tight. On the other hand, as we will
discuss, the epistemic analysis points to an arguably new identification assumption: That is, in concluding
that a categorization of level k reflects k steps of reasoning about rationality, the analyst is imposing an
additional identification assumption, one that goes beyond the requirement that hierarchies are induced
by an anchor. (See Identification Assumption 2.) Importantly, that assumption appears difficult to verify

in practice.

Literature This is not the first paper to point to difficulties in drawing inferences about how players
reason from the level-k categorization. The literature has pointed to at least four difficulties. First, it
may be difficult to ascertain the anchor that generates players’ beliefs. Toward that end, some papers
have suggested looking for a best-fitting anchor (Crawford and Iriberri, 2007; Wright and Leyton-Brown,
2019) or providing auxiliary evidence on the anchor (Costa-Gomes and Crawford, 2006; Brocas et al.,
2014). Second, it may be that the players themselves are uncertain about the anchor. (This is captured
by Strzalecki’s, 2014, cognitive rationalizability and is in the spirit of Section 2.3.2 in Alaoui and Penta,
2016.) Third, there may be that measurement error or other noise in the data, which may make it difficult
to infer a categorization of level k, from observed play. (See Stahl and Wilson, 1995, Costa-Gomes and
Crawford, 2006, and Cooper et al., 2024.) Fourth, it may be that the inferred levels on reasoning are not
portable across games. (See Georganas, Healy and Weber, 2015, Alaoui and Penta, 2016, Alaoui, Janezic
and Penta, 2020, and Cooper, Fatas, Morales and Qi, 2024.)

We abstract from these important concerns and looks at an idealized setting. In particular, it focuses on
a setting where there is one anchor that generates players’ hierarchies of beliefs and that anchor is known
to the analyst. So, neither the players nor the analyst face uncertainty about the anchor. Moreover, there
is no measurement error or noise in the data. In addition, it ignores concerns about portability. It argues
that, even in this idealized setting, the level k categorization may overestimate the extent to which there
is bounded reasoning.

The paper sits within a growing literature aimed at bringing ideas from epistemic game theory to bear
on experimental data. (Examples include Kneeland, 2015, Ghosh, Heifetz and Verbrugge, 2016, Ghosh and
Verbrugge, 2018, Li and Schipper, 2020, Brandenburger, Danieli and Friedenberg, 2021, Friedenberg and
Kneeland, 2024, and Healy, 2024.) Moreover, it can be viewed as providing a bridge between the level-k
literature and epistemic game theory. Schipper and Zhou (2024) and Liu and Ziegler (2025) are two recent
attempts to provide such a bridge. Schipper and Zhou uses ideas from epistemic game theory to motivate
a notion of level-k reasoning in extensive-form games. Liu and Ziegler models a level-0 player as one that
has different payoffs from those specified in the game; it then uses rationalizability concepts to analyze that
game of incomplete information and to draw connections to the level-k literature. Neither paper directly
discusses the identification problem that is the focus of this paper.

In the course of our analysis, we introduce the concept of a level-k type structure. This is a particular
epistemic type structure that induces hierarchies of beliefs consistent with the anchor. It differs from other
rich type structures, meant to model the level-k and cognitive hierarchy concepts, e.g., Kets (2010), Heifetz
and Kets (2018), and Strzalecki (2014). The type structures in Kets (2010) and Heifetz and Kets (2018)



capture finite-order beliefs about a primitive set of uncertainty, where the players may face uncertainty
about the length of others’ finite-order beliefs; the type structure in Strzalecki (2014) captures hierarchies
of beliefs about numbers (interpreted as levels). Much like Kets and Heifetz and Kets, our framework
directly models beliefs about a primitive set of uncertainty. Unlike these papers, we don’t include types
with finite-order beliefs or beliefs about finite-levels. This stems from the differences in the questions the
sets of papers address. Here, we are interested in understanding the extent to which behavior is consistent
with high levels of reasoning; as a consequence, being able to rationalize the behavior with a type structure
that induces hierarchies of beliefs (as opposed to finite-order beliefs) is a plus. (See, also, the discussion in
Section 8.)

1 Heuristic Treatment

Consider the two-player common interest game in Figure 1.1, where Player 1 is denoted by P1 and Player

2 is denoted by P2. We begin by applying the standard level-k solution concept to the game.

P2
as b2 Co d2

ar| 9,9 | 1,0 4,1 1,0

by | 0,1 4, 4 1,0 4,0
P1

a| 1,4 0,1 0,0 0,3

di 0,1 0, 4 3,0 3,3

Figure 1.1: A Common-Interest Game

The level-k solution concept begins by fixing an exogenous anchor for each player. For Pi=P1,P2 this
is a distribution u; on the strategies the other player, Pj, can choose. The level-1 strategies for Pi are the
strategies that are a best response under p;. The level-2 strategies for Pi are the strategies that are a best
response under a belief that assigns probability 1 to level-1 strategies of Pj. And so on.

Figure 1.2 describes the level-k behavior in four examples. In each example, P1 and P2 have the same
anchor, i.e., u1 = po: This is either the uniform anchor, the anchor where Pi assigns probability 1 to Pj
choosing a;, the anchor where Pi assigns probability 1 to Pj choosing c;, or the anchor where Pi assigns
probability 1 to Pj choosing d;. Notice, for each strategy s; € {a;,b;, c;} and each number m > 1, there is
some anchor so that so that s; is level-m for Pi.!

In each of these examples, there is no m so that d; is level-m for Pi. If Pi has an anchor that assigns
.5 1.5 to ¢; : dj, then d; would be level-1. But, regardless of Pj’s anchor, d; cannot be be level-2. More

generally:
Claim 1.1. Suppose P1’s and P2’s anchors are given by (p1,pu2). If d; is level-m for Pi, then m = 1.

The key observation is that d; is optimal only under a distribution that assigns positive probability to both
c¢j and d;.? Therefore, if d; is level-2 for P, it must be that both ¢; and d; are level-1 for Pj. However,

1 As standard, we refer to the solution concept as “level-k.” We use the index m to refer to a particular realization of k.
2When Pj is restricted to play a strategy in {a;,bj,d;} (resp. {aj,b;,c;}), d; is dominated by a mixture of a; : b; (resp.
by CLZ').



Uniform | 1 to qa; 1 to ¢ 1 to d;
Level-1 b ¢ a; b;
Level-2 b; a; c; b;
Level-3 b; Ci a; b;
Level-4 b a; ¢ b;
Level-5 b; ci a; b;

Figure 1.2: Level-k

there is no anchor y; under which ¢; and d; are both a best response.® Thus, d; cannot be level-2 for Pi,
regardless of Pj’s anchor p;. And, similarly, d; is not level-2 for Pj, regardless of Pi’s anchor u;. This, in

turn, implies that d; is not level-3 for Pi. And so on, for any m > 3.

The Basic Inference Problem To recap: The strategies d; and dy are level-1 for some anchor. But,
for any anchor and any m > 2, d; and ds are not level-m.

Suppose the analyst only observes data about how the game is played (and not auxiliary data, say,
about players beliefs). In particular, suppose the analyst observes P1 play d;. What can the analyst infer
about how she reasons? Based on the level-k analysis, the analyst might be tempted to conclude that P1 is
rational—in the sense that she plays a best response to the anchor—but does not reason further. Language
used in the literature is that P1 believes believes P2 is nonstrategic, P1 reasons one step, or P1 has depth
of reasoning one.

However, in this game, the entire strategy set is rationalizable. Standard results in epistemic game
theory show that any rationalizable strategy is consistent with rationality and common belief of rationality.
(See, e.g., Brandenburger and Dekel, 1987 and Tan and Werlang, 1988.) Thus, the observation of d; does
not, in and of itself, indicate that a P1 must believe P2 is not strategic.

More generally, the observation of d; alone cannot point to a bound in the steps or depth of reasoning,
i.e., how many steps of “I think, you think, I think ...” P1 can perform: P1 can only engage in rationality
and (m — 1) rounds of reasoning about rationality, if she can engage if m-steps of “I think, you think, I
think ...” Thus, if behavior is consistent with rationality and common belief of rationality then it is also

consistent with an unbounded depth of reasoning.

Rationality and Common Belief of Rationality It will be useful to better understand what goes into
the statement that d; is consistent with rationality and common belief of rationality. To better understand,
we revisit a standard epistemic model, as applied to Figure 1.1. A hallmark of the model is that it describes
the players hierarchies of beliefs about the play of the game. This is a necessary step: To specify whether
P1 (resp. P2) is rational, we must describe what beliefs P1 (resp. P2) holds about P2’s (resp. P1’s) play.
After all, whether a strategy is a best response for P1 depends on these first-order belief. By a similar

logic, to specify whether P1 does or does not believe P2 is rational, we must describe P1’s joint belief about

3If c;j and d; have the same expected payoff, then the expected payoff of a; must be strictly higher.



P2’s strategy and first-order belief, i.e., about P2’s strategy and belief about P2’s play. After all, whether
a strategy is rational or irrational for P2 will depend on his first-order belief. And so on.
We model these hierarchies of beliefs by an epistemic type structure, in the spirit of Harsanyi (1967).

The type structure has two ingredients: First, for each Pi, there is a set of types T;; in our example,
T; = {ti, ui, vi, w; }.

Second, for each Pi, there is a belief map ;, which maps each type of Pi to a belief about the strategy-type

pairs of Pj; in our example
Bit:)(cj,v5) =1 Bi(ui)(bj,u) =1 Bivi)(ay,t;) =1

and
1

5 .
Each type induces hierarchies of beliefs about the play of the game. For instance, type t; assigns probability

Bi(wi)(cj,v5) = Bi(w;)(dj, w;) =

1 to Pj playing c;, while type v; assigns assigns probability 1 to Pj playing a;. Since ¢; assigns probability
1 to (¢j,v;), this implies that t; assigns probability 1 to “Pj plays ¢; and believes I play a;.” And so on.
See Section 2 for more details.

Now turn to rationality, belief in rationality, etc. Rationality is a property of a strategy-type pair. The
pair (a;,t;) is rational because a; maximizes Pi’s expected payoffs given the belief associated with ¢;: The

action a; is a best response to c;. In fact, the set of rational strategy-type pairs for Pi is
Ri = {(ai, ), (bi, us), (ci, vi), (di wy) }-

Now observe that each type of Pi assigns probability 1 to “Pj is rational,” i.e., to the event R;; thus, each
type of Pi believes the other player is rational. So, R; is also the set of strategy-type pairs for P that are
consistent with rationality and 15t-order belief of rationality. From here, we can iterate to conclude that
R; is, in fact, the set of strategy-type pairs consistent with rationality and common belief of rationality
(RCBR). As a consequence, each of a;, b;, ¢;, and d; are consistent with RCBR.

Hierarchies of Beliefs vs. Anchored Beliefs We have seen that the strategy d; is, in fact, consistent
with RCBR. To show this, we described a specific model of P1’s and P2’s hierarchies of beliefs and pointed to
a type in that model, namely w;, so that (d;, w;) is rational, believes Pj is rational, and so on. Importantly,
those hierarchies of beliefs were inconsistent with the idea that the players’ hierarchies are generated by an
anchor. Take, for instance, the case where P1’s and P2’s anchors (uq, u2) both assign probability one to
the other player Pj choosing c;. Type v; has the first-order belief associated with P1’s anchor p; and type
t; believes P2 has the first-order belief associated with P2’s anchor py. But, types u; and w; do not have
hierarchies of beliefs consistent with these anchor. Similarly, if P1’s and P2’s anchors (u1, p2) both assign
.5 : .5 to the other player Pj choosing c; or d;. Then, type w; has first-order beliefs associated with P1’s
anchor. But no other type has hierarchies consistent with this anchor. And so on. (See Example 4.1.)
Arguably, the spirit of level-k analysis involves a restriction on the hierarchies of beliefs that players can
hold. In particular, the analysis imposes the substantive assumption that the players beliefs are generated

by a particular anchor. This assumption is important in categorizing a particular strategy as level-m for



some m > 1.

This raises the question: Suppose players hierarchies of beliefs are generated by an anchor. In that
case, would the observation of d; allow us the analyst to conclude that Pi’s behavior is inconsistent with
Pi being rational and believing Pj is rational? That is, would the observation of d; point to a form of

bounded reasoning?

The Restricted Inference Problem To address the question, our analysis focuses on, what we call,
(epistemic) level-k type structures. Much as above, these are type structures that involve type sets and
belief maps for each of P1 and P2. But, now, the type set of Pi can be decomposed into a set of 1-types
(T}, a set of 2-types (T?), etc. The 1-types each have first-order beliefs associated with the anchor.
The 2-types each assign probability one to Pj having a 1-type (i.e., their marginal belief on T} assigns
probability 1 to le). And so on. Notice, a level-k type structure is defined relative to a particular anchor
and only induces hierarchies of beliefs consistent with that anchor. (See Proposition 4.1.) Thus, the type
structure cannot induce all hierarchies of beliefs.

A notable level-k type structure is, what we call, a complete level-k type structure. This is a level-k type
structure that satisfies the following requirement: For every belief that assigns probability 1 to the m-types
of Pj, there is an (m + 1)-type of Pi that holds induces that belief. A complete level-k type structure
induces a rich set of beliefs. (See Proposition 4.3 and Section 8-A.) Proposition 4.3 shows that there exists
a complete level-k type structure.

The main theorem provides the behavioral implications of rationality and m!"-order belief of rationality

(RmBR) in a complete level-k type structure.

Main Theorem (Theorem 5.1). In a complete level-k type structure (for a particular

anchor), the predictions of RmBR are exactly the (m 4 1)-rationalizable strategies.

Thus, even when we focus on models of hierarchies of beliefs that are consistent with the anchor, each
(m + 1)-rationalizable strategy is consistent with RmBR.

Return then to Figure 1.1. If we observe P1 play d; we cannot conclude that there is a bound m
so that the behavior must reflect RmBR, even if we assume that the hierarchies of beliefs are generated
by a particular anchor. Thus, the categorization of d; as level-1 does not allow us to draw a conclusion
about bounded reasoning—at least not without additional auxiliary assumptions about how players reason
or without a richer dataset. Section 6 discusses additional auxiliary assumptions and the difficulty of

verifying those assumptions in the data.

2 The Environment

We begin with mathematical preliminaries used throughout the paper. Fix a metrizable set 2 and endow
Q1 with the Borel o-algebra. We will refer to an element of the Borel o-algebra as an event. Write A(£2)
for the set of Borel probability measures on 2 and endow A() with the topology of weak convergence.
Given a measure p € A(Q x ®), write marg u for the marginal of u on .

Given a finite index set I and a collection of metrizable sets (€; : i € I), write Q_; = [[;cp ;3 @
and Q = [[,;
collection of metrizable sets (®; : ¢ € I) and measurable maps f; : Q; — ®;, write f_; = Q_; — ®_, for the

;. Endow the product of metrizable spaces with the product topology. Given a second



associated product map, i.e., given w_; = (w; : j # 1), foi(w—;) = (fj(w;) : j # 1). If each f; is measurable
(resp. continuous), then each f_; is also measurable (resp. continuous).

Fix metrizable sets 2 and ® and let f : @ — ® be a measurable map. The image measure of f under
1€ A(Q) is a measure v € A(®) where, for each Borel E C @, v(E) = p(f~(E)). Let f: A(Q) — A(®)
map each v € A(Q) to the image measure of f under v. Note, f is measurable; if f is continuous, f
is continuous. (See, e.g., Friedenberg and Keisler, 2021, Lemma A.1, and Aliprantis and Border, 2007,
Theorem 14.14.)

2.1 The Epistemic Game

Throughout the paper, fix a game G = (S;,m; : @ € I): Here, I is a finite set of players, S; is a finite
strategy set for player i, and 7; : S; X S_; — R is player i’s payoff function. The game is non-trivial, in
that each player has at least two strategies (|S;| > 2). Extend m; to m; : S; x A(S_;) — R in the usual way.

An epistemic game appends to the game a description of the players’ hierarchies of beliefs about the
play of the game. Following Harsanyi (1967), we use type structures to implicitly describe the hierarchies
of beliefs.

Definition 2.1. An S-based type structure is some T = (S_;,T;,3; : i € I) where,
(i) for each 4, T; is a metrizable set of types for i, and
(ii) for each i, B; : T; — A(S_; x T_;) is a measurable belief map for .

In an S-based type structure, each type of player i, ¢;, is mapped to a joint belief about the strategies and
types of the other players. Because the set of strategies is fixed throughout our analysis, we often refer to
an S-based type structure as, simply, a type structure. When each T; is (at most) countable, we call the

type structure countable.

2.2 Type Structures and Hierarchies of Beliefs

The epistemic game describes the rules of the game, payoff functions, and hierarchies of beliefs about the
play of the game. The former two are captured by G and the latter is captured by a type structure. The
example in Section 1 is indicative of how types induce hierarchies of beliefs. In particular, each type ;
induces a belief on the strategies of other players, given by marg Sﬂﬂi(ﬂ-). For instance, type w;’s first-
order belief assigns .5 : .5 to ¢; : d;. Moreover, because each type has a joint belief about the strategies
and types of the other player, each type has a joint belief about the strategies and first-order beliefs of the
other player. For instance, type w; assigns .5 to “the other player will play c; and believes that I will play
a;” and .5 to “the other player will play d; and assigns .5 : .5 to me playing ¢; : d;.” These joint beliefs
constitute the type’s second-order beliefs. And so on.

The example is indicative of how type structures induce hierarchies of beliefs. To formalize this, begin
by inductively describing the set of m‘"-order beliefs of player i. Set X}! = S_; and H} = A(X}); these
sets are each compact metric sets. Assume the sets X" and H;" have been defined and are compact metric
sets. Set

X" = {(s_4, bty h™) € X x H™, : if m > 2 then, for each j # i, marg ymhj' = ey



and H™ = A(X™"1). These too are compact metric sets. (See Friedenberg, 2010, Lemma Al and
Remark A1l.) The set X™ is player i’s m"-order space of uncertainty. The set H™ is player i’s set of

mth-order beliefs. Then

H® = {(h{,h},..) € [[ H™: for each m, marg x,.hj"*" = hi"}
m>1

is player i’s set of hierarchies of beliefs.

For each m > 1, there is a natural mapping 6" : T; — H", specifying each type’s m*'-order belief.
Type t;’s first-order belief is simply the marginal of 5;(¢;) onto the strategies of the other players; that
is, 0} (t;) = margg  fBi(t;). Type t;’s second-order belief, 07(t;) = h?, is a joint belief about strategies
and first-order beliefs: The probability that h? assigns to an event about S_; x H!,

; corresponds to the

probability that 5;(¢;) assigns to strategy-type pairs that induce that event. More precisely, for each event
E i CX}! xHY =8 ;x[];.A5-),

R (E—;) = Bi(ti)({(s—i, t—i) : (5—4,6L,(t—;)) € E_;}).

Appendix B.1 formally describes the maps 8" : T; — H]™. Given these maps, §; : T; — H;® is defined by
§i(t;) = (6},02,...). If §;(t;) = h; (vesp. 67 (t;) = hi"), say that type t; induces the hierarchy of beliefs h;

(resp. the m'"-order belief h"). The set of hierarchies of beliefs for 4 induced by T is 6;(T;) C H;.

Of particular interest is a type structure that is “rich,” in the sense that it induces all possible beliefs.
Definition 2.2. Call the type structure T = (S_;,T;, 8; : i € I) type-complete if, for each i, ; is onto.

So, a type structure is type-complete if, for each belief i can hold (about S_; x T—;), there is a type of 4
that holds that belief. That is, the type structure contains all possible beliefs about types. The canonical
constructions of a so-called universal type structure (e.g,. Mertens and Zamir, 1985, Brandenburger and
Dekel, 1993, Heifetz and Samet, 1998, etc) are each type-complete. When the type sets are compact and
the belief maps are continuous, a type-complete type structure induces all hierarchies of beliefs. (See
Friedenberg, 2010.)

3 Hierarchies of Beliefs Induced by the Anchor

The level-k solution concept is tied to an anchor p = (u; : i € I) € [[;c; A(S—;); call p; i’s anchor.
Conceptually, an anchor specifies a first-order belief for each player i. This implicitly limits the hierarchies
of beliefs the players consider possible. However, importantly, the anchor alone does not uniquely pin down
those hierarchies. Instead, it restricts, what we will call, the hierarchies of partial beliefs. We next describe

how the anchor restricts the partial hierarchies and, in turn, restricts the hierarchies of beliefs.

Remark 3.1. The literature will often fix a symmetric game and look at symmetric anchors, i.e., anchors
where each player has the same belief about how others play the game. (There are important exception.)
Because we apply the ideas to arbitrary games (i.e., not necessarily symmetric games), we do not restrict the
anchors to be symmetric. To be sure, players’ anchors can be symmetric, but they need not be symmetric.
Likewise, anchors can involve a belief that is independent or correlated. They can involve degenerate or

non-degenerate beliefs. Etc.
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3.1 Hierarchies of Partial Beliefs

Set P} = A(S_;) and note that it is a compact metric set. Assuming compact metric sets P/™ have been
defined, set PZ”H = A(P™) and note that it too is a compact metric set. The set P/™ is player i’s set
of mtP-order partial beliefs. Note, when m > 2, an m!"-order partial belief differs from an m‘"-order
belief. For instance, a second-order belief is a joint belief about strategies and first-order beliefs, whereas

a second-order partial belief is a belief only about first-order beliefs. Write

pe =1 P

m>1

for the set of hierarchies of partial beliefs.

The anchor implicitly imposes a restriction on the m!*-order partial beliefs that players consider possi-
ble. For instance, if i is a level-1 player, then i’s first-order partial belief must correspond to the anchor. If
1 is a level-2 player, then i’s second-order partial belief must assign probability 1 to the first-order beliefs
p—; = (u; - j € I\{¢}). And so on.

More generally, an anchor p = (u; : @ € I) € [[,c; A(S—;) uniquely determines m'"-order partial

beliefs, pj,: Set pzl, u = Wi. Assuming each pj”,, € P has been defined, let prHl e Pim+1 be the measure

(A7
with pi " ({p™; ,}) = 1. Write pi = (9} 1, P30 --) and pp = (pp, 13- - -)-

3.2 Hierarchies of Beliefs Consistent with the Anchor

There is a natural mapping from hierarchies of beliefs to hierarchies of partial beliefs, viz. n; : H>* — P.
To understand the mapping, consider n;(h},h?,...) = (p},p?,...). Intuitively, p} = h} since there is no
distinction between first-order beliefs and first-order partial beliefs. Moreover, p; = marg 5(s_,)h7, since
a second-order partial belief simply provides information about beliefs over first-order partial beliefs and
first-order partial beliefs correspond to first-order beliefs. Since there is a distinction between second-order
partial beliefs and second-order beliefs, the relationship between h and p} requires care.

To define the mapping 7;, it will be convenient to define sets that correspond to i’s m!*-order space
of partial uncertainty, i.e., Y;™: Set Y;! = S_; and, for m > 2, V" = Pl"ifl. Note that P/ = A(Y;™).
Now, inductively define continuous maps # : X! — Y™ and 5/ : H™ — P™: First, take 7} : X} — Y;!
and n} : H! — P! to be the identity maps; note that these are continuous. Next, assume continuous
maps A" : X® — Y™ and n* : H™ — P/ have been defined. Define 7" : X"t — Y"1 50 that,
for each z"*t = (", h™,) € X" At (@, b)) = ™ (R™,). Since each n™ is continuous, H7 is
continuous. Now let n/" ™! = ﬁ;’“‘l, so that "t (A"t
that 7" = ﬁ:”“ is continuous since 7" is continuous.

The map n; : H® — P> is given by n;(hl, h?,...) = (nt(h}),n2(h?),...). Thus it maps each hierarchy

of beliefs to its associated hierarchy of partial beliefs.

is the image measure of h?“ under ﬁimﬂ; note

Definition 3.1. Say a hierarchy h; = (h},h?,...) is consistent with the anchor p = (u; : i € I) €
[Lic;r A(S-:) if there exists some m > 1 so that n{"(h]") = p;",.

If h; = (h},h?,...) is consistent with the anchor, there is some m!-order belief that coincides with the
m*-order partial beliefs induced by the anchor. This captures the restriction on beliefs implicitly imposed
by the level-k solution concept. (Note, there, a player classified as level-m has m‘"-order partial beliefs

induced by the anchor, but may not have n*"-order partial beliefs induced by the anchor for some n # m.)
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4 Level-k Type Structures

We will be interested in type structures that only induce hierarchies of beliefs consistent with the anchor.

This will be captured by a level-k type structure. This section defines such structures.

4.1 Level-k Type Structure

Fix a type structure T = (S_;,T;,8; : i € I). Say C; = {T/" : m = 1,2,...} is a Borel cover of T; if
(i) each 77" is a non-empty Borel subset of T;, and (ii) U,,~, 77" = Ti. Note, a countably infinite partition

of T; is a Borel cover, if each of its members is Borel. But, a Borel cover need not be a partition.

Definition 4.1. Call 7 = (S_;,T;,8; : i € I) a level-k type structure (for p = (p; : i € I)) if, for each
i, there exists a Borel cover C; = {T/™ : m = 1,2,...} of T; so that the following hold:

(i) If t; € Til, then marg g B;(t;) = pi, and
(ii) For each m > 1,if t; € Tim‘H, then £;(t;)(S—; x T™) = 1.

In a level-k type structure, we can decompose each player’s types into non-empty sets T}, T2, . ... We will
refer to types in T;" as i’s m-types. The 1-types have first-order beliefs associated with the anchor p. The
2-types assign probability 1 to the 1-types having the first-order beliefs associated with p. More generally,
the (k + 1)-types assign probability 1 to the m-types.

Example 4.1. To better understand what goes into a level-k type structure, return to the example of
Section 1 (page 7). That type structure is not a level-k type structure for any anchor g = (11, 2). Suppose,
contra hypothesis, that this type structure is a level-k type structure for some anchor p. Then, for each
1, there exists some m so that u; is an m-type. This implies that there must be some player ¢ for which
u; € T} and, so, p;(bj) = 1. As a consequence, u; is the unique 1-type for i. If T} = {u;} and T3 = {us}
then, for each 7 and each m, T/™ = {u;}. That is, types t;, v;, w; are not m-types for any m. So, without

loss of generality, suppose T{ = {u;} and ug & T4. Since T} = {u;} it follows that
T12m+1 = {ul} and T22(7n+1) = {UQ}

for each m > 0.

Observe, since to, v2, and wo have distinct first-order beliefs, 7} must be a singleton. Since each #; € T}
must assign probability one to T3, T? must also be a singleton. Now, by induction, for each i and each m,
T;" must be a singleton. But then, for each ¢ and each m, w; is not an m-type.

Thus, there can be no anchor p so that the example is classified as a level-k type structure for p.
Indeed, an analogous argument shows that there is no p so that the type structure only induces hierarchies

of beliefs consistent with p.

This argument reflects the fact that, in the example, the type structure induces hierarchies of beliefs
that are inconsistent with a single anchor. By contrast, level-k type structures only induce hierarchies of

beliefs consistent with an anchor.

Proposition 4.1. Let T be a level-k type structure for . Then each hierarchy of beliefs induced by T is

consistent with .
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Appendix B.2 proves Proposition 4.1. The proof follows from a stronger claim: If a type is classified as
an m-type (according to any appropriately chosen cover), then the type must induce the m!"-order partial
beliefs p;",,. This provides an interpretation of the m-types.

Because there are (always) hierarchies of beliefs that are inconsistent with the anchor, Proposition 4.1
implies that no level-k type structure induces all hierarchies of beliefs. It is also the case that a level-k

type structure cannot induce all beliefs about types.*
Proposition 4.2. If T = (S_;,T;, i : i € I) is a level-k type structure for p, then T is not type-complete.

To understand why the result holds, suppose that a level-k type structure were, in fact, type-complete. The
key is that we can inductively find types ¢J* so that ¢* is an m-type but not an ¢-type for any ¢ # m. Now
consider a belief v; € A(S_; x T_;) which (i) has marg g v; # p;, and (ii) assigns positive probability
to both ¢} and ¢?. On the one hand, type-completness requires that there is a type of player j that holds
that belief. On the other hand, that type cannot be classified as an m-type for any m: Because first-order
beliefs differ from the anchor, it cannot be classified as a 1-type. Because it assigns positive probability to
both ¢} and t? but there is no £ with {t},t?} C T, it cannot be classified as a m-type for any m > 2. This

results in a contradiction.

4.2 Hierarchies Induced by Level-k£ Type Structures

While a level-k type structure must induce hierarchies of beliefs consistent with the anchor u, two different
level-k type structures (for p) may induce different hierarchies of beliefs. The next two examples illustrate
this fact.

Example 4.2. Consider a two-player game where each S; = {0O;,<;}. Suppose the anchor p = (p1, 2)

is such that, for each 4, p;(0_;) = % Consider a type structure 7 with the following properties: Set

Ty = T, = N*. Take each 8;(1) so that 3;(1)(0_;,2) = 2 and B;(1)(¢_;,3) = 5. For m > 2, take
Bim)(O_;,m—1)=1 if m is even,

and
Bim)(O_;jym—1)=1 if m is odd.

For each i, {T/™ = {m} : m > 1} is a Borel cover of T;. Thus, T is a level-k type structure.

Example 4.3. Consider a two-player game where each S; = {0O;,<;}. Suppose the anchor p = (p1, 2)

is such that, for each 4, p;(0_;) = % Consider a type structure 7 with the following properties: Set

Ty =T, = N*. Likewise, take each 3;(1) so that 8;(1)(0_;,2) = 2 and 3;(1)(¢_;,3) = 5. For m > 2, take

Bim) (Bt m — 1) = film)(O—sym — 1)) = 3.

For each 4, {T}" = {m} : m > 1} is a Borel cover for 7. Thus, T is a level-k type structure.

4Friedenberg (2010) shows that a type-complete structure induces all hierarchies of beliefs, if the type sets are compact
and the belief maps are continuous. So, there can be no level-k type structure that is type-complete, has compact type sets
and continuous belief maps. This result does not impose the results of compactness and continuity, which (as argued in
(Friedenberg, 2010)) are really substantive assumptions.
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Examples 4.2-4.3 provide two different level-k type structures for a given anchor p. In both type
structures, the 1-types have first-order (partial) beliefs associated with the anchor, i.e., they assign % : % to
O_; : &_;. Likewise, in both type structures, the 2-type have second-order partial beliefs associated with
the anchor, i.e., the type t; = 2 assigns probability 1 to t_; = 1 and so probability 1 to the event that “the
other player assigns % : % to O_; : <¢_;.” And so on. In this sense, the types induce hierarchies of partial
beliefs consistent with the anchor, illustrating Proposition 4.1.

However, in these two examples, the type structures induce disjoint sets of hierarchies of beliefs. To
see this, observe that the first-order beliefs of m-types differs in these type structures, when m > 2. In
Example 4.2, each such m-type has a degenerate belief, assigning probability 1 to either of O_; or ¢_;; in
Example 4.3, each such m-type has a non-degenerate belief, assigning % : % to s_; : r—;. Thus, for each
type m > 2 in Example 4.2, there is no type n > 1 in Example 4.3 that induces the same first-order beliefs,
a fortiori the same hierarchies of beliefs. And conversely, with Example 4.3 and Example 4.2 reversed.
Moreover, the 1-types induce distinct second-order beliefs. In Example 4.2, type 1 assigns probability % to
“the other player chooses O_; and assigns probability 1 to me choosing 0;;” however, in 4.3, type 1 assigns

zero probability to that same event.

4.3 Complete Level-k Type Structures

Proposition 4.2 says that a level-k type structure imposes the substantive assumption that the hierarchies
are induced by the anchor. But, Section 4.2 illustrated that there may be multiple level-k type structures,
associated with the same anchor, but which induce different hierarchies of beliefs. To understand why this
arises, note that, in Examples 4.2-4.3 there is exactly one 2-type. Yet, there are many second-order beliefs
that a player can hold, even if the player has a second-order partial belief consistent with the anchor. Both
type structures rule out such second-order beliefs and, in doing so, they impose auxiliary assumptions
on players’ hierarchies of beliefs. These auxiliary assumptions on beliefs go above and the substantive
assumptions imposed by the anchor. We will be interested in type structures that don’t impose these

exogenous restrictions on beliefs (or, at least, minimize such exogenous restrictions).

Definition 4.2. Call T = (S_;,T;,0; : i € I) a complete level-k type structure (for p = (u; : ¢ € I))
if, for each 4, there exists a Borel cover C; = {T/" : m = 1,2,...} of T; so that the following hold:

(i) If t; € T}, then marg g Bi(t;) = pu,
(ii) For each m > 1, if t; € T;" !, then B;(t;)(S_; x T™) = 1, and
(iii) For each m > 1 and each v; € A(S_; x T_;) with v;(S_; x T™) = 1, there is a type t; € T;" .

Call T a complete level-k type structure if there is some p so that 7 is a complete level-k type

structure for p.

So, T is a complete level-k type structure for p if it is a level-k type structure that satisfies the following
additional requirement: For each belief that assigns probability 1 to the m-types, there is an (m + 1)-type
of the player that holds that belief.

We can always find a complete level-k type structure.

Proposition 4.3. Fiz an p = (u; : ¢ € I). There exists a complete level-k type structure for p, viz. T*,
that satisfies the following property: If T is a countable level-k type structure for p, then T* induces the
hierarchies of beliefs induced by T .
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The proof of Proposition 4.3 constructs a particular level-k type structure 7* = (S_;, 77, 8; : i € I). The
construction has a rich set of 1-types, i.e., for each v; € A(S_; x T*;) with marg g v; = p;, there is a
1-type in T;* that holds that belief.> Thus, there are no restrictions on the beliefs of 1-types aside from the
requirement that their first-order beliefs coincide with the anchor. With this, condition (iii) implies that
the construction has a rich set of 2-types. And so on.

That said, there are hierarchies of beliefs consistent with the anchor that cannot be induced by any
level-k type structure, a fortiori any complete level-k type structure. See Example 8.1. (See, also, Section
8-A on strengthening Proposition 4.3.) Section 8-B discusses why this is immaterial from the perspective

of the inference problem.

5 The Inference Problem

We will be interested in the case where the analyst observes the strategy played and wants to infer the max-
imum level of reasoning about rationality consistent with observed behavior.® Reasoning about rationality

will be captured by the epistemic conditions of rationality and mt"-order belief of rationality.

5.1 Rationality and m!"-order Belief of Rationality

An epistemic game (G, T) induces a set of states S x T. So, a state describes a strategy-type pair for each

player. Rationality and m!*-order belief of rationality is a property that a state may or may not possess.
Definition 5.1. Say (s;,1;) is rational if 5; € BR;[marg g_, 3;(t;)].

So a strategy-type pair (s;,t;) is rational if s; is a best response under the first-order belief associated with
ti, viz. marg g Bi(t;).

Definition 5.2. Say t; € T; believes E_; C S_; x T_; if E_; is Borel and f;(¢;)(E-;) = 1.

So a type t; believes an event if it assigns probability 1 to the event (i.e., to the Borel set F_;). Given

some F_; CS_; x T_;, write
Bi(E—i) = {tz - T; : ﬂz(tz)(E—z) = 1}

for the set of types that believe E_;. Note, if E_; =0, then B;(E_;) = 0.
Write R} for the set of rational strategy-type pairs. Inductively define R™ by

R = R™N (S; x Bi(R™)).

Set R = (.51 R

Definition 5.3. The set of states at which there is rationality and m'"-order belief of rationality
(RmBR) is R™*! = [],.; R". The set of states at which there is rationality and common belief of
rationality (RCBR) is R = [[,.; R{°.

5There are alternate constructions of complete level-k type structures, which do not satisfy this richness property.
60f course, at times, authors augment the dataset with other observed variables of interest. Our concern is what the
analyst can learn from the observed play, which is the focus of many studies.
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5.2 The Unrestricted Inference Problem

The unrestricted inference problem is not the focus of our interest. Nonetheless, it will serve as a useful
benchmark to think about the restricted inference problem.

In the unrestricted inference problem, the analyst observes the strategy played. But the analyst does
not observe the set of hierarchies of beliefs players consider possible, i.e., the relevant type structure 7. Nor
is the analyst prepared to make a substantive assumption about those beliefs. So, the relevant inference
question is: If the analyst observes s;, what is the maximum m so that s; is consistent with RmBR in some
type structure. More informally, what is the maximum level of reasoning about rationality consistent with
observed behavior?

The answer to this question will depend on whether (or not) the observed strategy is m-rationalizable:
Set SY = S; and assume the sets S have been defined. A strategy s; is in S/ if and only if there exists
some v; € A(S_;) with: (i) s; € BR;[v;], and (ii) v;(S™,) = 1. The set SI™ is the set of m-rationalizable

strategies for player i. The set S° = ﬂm21 Si" is the set of rationalizable strategies for player :.
Proposition 5.1 (Known Result). Fiz an epistemic game (G, T).

(i) For each m > 1, proj gR™ C S™.

(ii) If T is type-complete, for each m > 1, proj gR™ = S™.
(ii5) If T is type-complete with compact type sets and continuous belief maps, proj gR>® = 5.

See Brandenburger and Dekel (1987), Tan and Werlang (1988), Battigalli and Siniscalchi (2002), and
Friedenberg and Keisler (2021) for versions of this known result.

To understand how the result speaks to the unrestricted inference problem, consider two cases. First,
suppose the analyst observes s; € S{”\ST‘H, i.e., the analyst observes the player choose a strategy that is
m- but not (m + 1)-rationalizable. Then the analyst concludes the behavior is consistent with, at most,
R(m —1)BR, i.e., m rounds of reasoning about rationality. In particular, s; is consistent with R(m — 1)BR
in a type-complete type structure (part (ii)), but is inconsistent with RmBR in any other structure (part
(i).

Second, suppose the analyst observes s; € S°. Then, there is a type-complete structure so that, for
each m, the is a type ¢; is consistent with RCBR (part (iii)). In this sense, s; is consistent with unbounded

reasoning about rationality.

5.3 The Restricted Inference Problem

In the restricted inference problem, the analyst is prepared to make the substantive assumption that
hierarchies of beliefs are generated by some anchor p. Thus, the relavent inference question is: If the
analyst observes s;, what is the maximum m so that s; is consistent with RmBR in some level-k type
structure for p. One might think that the answer is tied to the level-k solution concept (for ). However,

as the next result indicates, it is not:
Theorem 5.1. Fiz an epistemic game (G, T), where T is a level-k type structure for .
(i) For each m > 1, proj gR™ C S™.

(i) If T is a complete level-k type structure for w, for each m > 1, proj gR™ = S™.
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So, despite the fact that the analyst makes the substantive assumption that the hierarchies of beliefs are
generated by a particular anchor p, the nature of the inference problem is similar to the unrestricted
inference problem: If the analyst observes a strategy that is m- but not (m + 1)-rationalizable, then the
analyst concludes the behavior is consistent with, at most, R(m — 1)BR in any level-k type structure for
p. In particular, s; is consistent with R(m — 1)BR in a complete level-k type structure for p (part (ii))
but is inconsistent with RmBR is any level-k type structure for p (part (i)).

Note, if the analyst observes s; € S, then the conclusion is more subtle. Part (ii) says that the
analyst cannot put a bound on reasoning about rationality, in the following sense: In a complete level-k
type structure for p, the strategy s; is consistent with RmBR for each m. That is, in a complete level-k

1 42

27710

type structure, there are types ¢ .. so that, for each m, (s;,t") € R™. (Note, in general, t7* will not
be an m-type.) However, this stops short of saying that s; is consistent with RCBR. In fact, it may not be

consistent with RCBR, as the following example indicates.

5.4 Proof of Theorem 5.1

We now turn to prove Theorem 5.1. Part (i) is an implication of Proposition 5.1’s part (i). For part (ii) it
suffices to show the reverse inclusion. In particular, we show the following: If s; € S;", then there exists a
(m + 1)-type t"t1 € T/ so that (s;,t]"*") € R™. The proof is by induction on m.

First, fix s; € S{. Then there exists some v; € A(S_;) such that s; is a best response under v;. There
exists ¢7 € T such that marg g B;(t7) = v;. As such, (s;,t7) € R}.

Next, assume the result holds for m. Fix s; € S;"H. Then there exists some v; € A(S_;) such that s;
is a best response under v; and v;(S™;) = 1. By the induction hypothesis, there is a mapping f™ : S™ —
T™* ! such that (s_;, f™(s—;)) € R™;. Construct &; € A(S_; x T_;) so that D;(s_s, f™(s_:)) = vi(s_i).
In a complete level-k type structure, there exists some 772 € T/ such that £;(t"*?) = #;. Since
marg g Bi(t"?) = v, (s;,t]""%) € R}. Moreover, for each n < m, R"; is Borel (Lemma C.3) and

7

Supp ﬂi(t;"“) C R™ C R"™,. So, t;”“ believes R”, for each n < m. As such, (si,t;””) € Rg”“.

6 The Level-k Inference Problem

Theorem 5.1 raises the question: If we identify a subject as level-m but not level-n for n > m, what can
we infer about the nature of the subject’s reasoning. To address the question, we begin by providing an
epistemic characterization of the level-k solution concept. We then discuss what the characterization means

from the perspective of inferring reasoning about rationality.

6.1 The Level-k Solution Concept

Often, papers define the Level-k concept relative to a specific game. Because we want to define the concept
for all (simultaneous-move) games, we introduce an abstract definition. We then discuss choices made in

adopting the definition.

Definition 6.1. Set L! = BR;[x;]. Assume the sets L™ have been defined. Let L"*' be the set of

strategies s; so that there exists some v; € A(S_;) satisfying

(i) s; € BR;[v;], and
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(i) v (L™) = 1.

Say a strategy is level-m (for p) if s; € L. Call the set LI as i’s level-m behavior (for p) and call the
set L™ = [[;c; Li" the level-m behavior (for p). The level-k solution concept (for u) is the profile
(LY, 12,..).

The level-k solution concept exogenously fixes a profile of first-order beliefs p = (u; : ¢ € I), where p;
reflects i’s beliefs about the strategies others play. It then iterates best responses relative to those beliefs.
Level-1 behavior is the set of strategy profiles (s; : ¢ € I) where each s; is a best response under i’s anchor.
Level-2 behavior is the set of strategy profiles (s; : i € I) where each s; is a best response under a belief

that assigns probability one to the level-1 behavior of other players. Etc.

Remark 6.1. Our definition allows for the fact that the sets LI" may not be a singleton. In fact, there
are prominent examples where the level-k solution concept has been applied, despite the fact that there
are multiple best responses. For instance, consider a 3-player beauty contest game (Nagel, 1995), where
players simultaneously choose a number in {1,2,3,4,5}. A player wins if their choice is closest to % of the
average; they loose if some other bid is closer to % of the average. Ties split the win equally. If the anchor
assigns probability 1 to the arithmatic mean 3, then bidding either of 1 or 2 is a best response.

When there are multiple best responses, some papers assume players have a uniform belief over those
best responses. So, in the beauty contest example of the previous paragraph, a level-2 strategy must be a

1

best response under a belief that assigns 3 : % to 1: 2. This imposes a secondary exogenous restriction on

beliefs—but one that depends on iterative best responses. We discuss this further in Section 8-D.

6.2 Epistemic Foundations for Level-k

Theorem 6.1. Fix an epistemic game (G,T), where T is a level-k type structure for p. For each player
i, fix covers C; = {T™ : m = 1,2,...} satisfying conditions (i)-(ii) of Definition 4.1 (resp. (i)-(ii)-(iii) of
Definition 4.2, if T is a complete level-k type structure).

(i) For each m > 1, proj g. (Ri* N (S; x T;™)) € L{".
(ii) For each m > 1, if T is a complete level-k type structure for p, proj g, (R{* N (S; x T{™)) = Lj*.

Much like Theorem 5.1, Theorem 6.1 fixes a level-k type structure for p. Refer to Figure TBA. Whereas
Theorem 5.1 focused on the behavioral implications of R(m — 1)BR, Theorem 6.1 focuses on the behavioral
implications of R(m — 1)BR for only the m-types. Part (i) says that, if the m-types engage in R(m —1)BR,
their behavior is level-m (for w). Part (ii) adds that, in any complete level-k type structure, any level-m
strategy for p is consistent with R(m — 1)BR for an m-type.

To better understand the Theorem, fix a level-k type structure for g (not necessarily a complete level-k
type structure). A strategy is level-1 strategy for p if and only if there is a 1-type t; so that (s;,t;) is
rational. (See Proposition C.1 part (i).) Note, this conclusion is stronger than that in part (i) and must
only hold for m = 1. In particular, a strategy s; may be level-2 for p even if there is no 2-type t; so that

(84, ;) is consistent with RIBR. The next example illustrates this claim.

Example 6.1. Refer to the game in Figure 6.1. Consider an anchor g = (1, ue) with each u;(D_;) = 1.
Observe that
L ={U;,M;} = S"
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for each m > 1. We next show that there is a level-k type structure for g so that (i) each m-rationalizable
strategy is consistent with RmBR, but (ii) there is a level-k strategy for p so that some s; € L? is
inconsistent with R1BR for every 2-type.

U_, | M_; | D_;
Us; 1 0 1
M; 1 1
D; -1 -1 -1
Figure 6.1

Next define a level-k type structure for u. Set each T; = {¢;,v;} X N. The belief maps are de-
fined as follows: First, 5;(t;, 1)(D—;, (t—:,2)) = Bi(vi, 1)(D—s, (v—;,2)) = 1 and B;(¢;,2)(U—;, (t—;,1)) =
Bi(vi, 2)(U_y, (v—4,1)) = 1. Second, B;(ti,3)(U—i, (t—:,2)) = 1 but 5;(vi,3)(D_s, (v—4,2)) = 1. Third, for
each n > 4, B;(t;,n)(U—;, (t—iyn — 1)) = Bi(vy,n)(M_;, (v_;,n — 1)) = 1. Note, this is a level-k type
structure for g associated with covers C; = {{t;,v;} x {m} :m > 1}.

For each m, proj g, RI" = {U;, M;}. However, proj g (R? NT7?) = {U;} C LI".

Example 6.1 features a “rich” level-k type structure, in the sense that there are enough beliefs so that all
the m-rationalizable strategies are consistent with R(m — 1)BR. Thus, for this specific type structure, part
(i) of Theorem 5.1 can be strengthened from inclusion to equality. Despite the type structure being rich
in this sense, it does not have a rich set of 2-types. As a consequence, there are level-2 strategies that
are inconsistent with R1BR for each 2-type. Part (ii) of Theorem 6.1 says implies that, when there is a
“rich” set of 2-types (in the sense of the requirement associated with a complete level-k type structure),
any level-2 strategies is consistent with R1BR for some 2-type.

While a complete level-k type structure features a sufficiently “rich” set of 2-types, 3-types, etc., it is
important to note that it does not induce a rich set of beliefs: In particular, we saw that a complete level-k
type structure cannot induce all hierarchies of beliefs. Moreover, a complete level-k type structure cannot

be type-complete. See Propositions 4.1-4.2.

6.3 Identifying Levels of Reasoning about Rationality

Suppose the analyst observes a player choose some strategy s} so that (i) s} is level-m (m > 1) for p, but
(ii) s7 is not level-n (for p) for any n > m. What can the analyst infer about how the player reasons about
rationality? We first address the question in the context of the unrestricted inference problem, then in the
context of the restricted inference problem, and finally in the context of Theorem 6.1. To do so, we use
the following fact: If s} is level-m then s} is m-rationalizable. (See Lemma C.4.)

In the unrestricted inference problem, the analyst only observes the strategy s; and the analyst is not
prepared to make an assumption about the hierarchies of beliefs that players consider possible. Since s;
is level-m, the analyst concludes that s} is consistent with R(m — 1)BR in some type structure. Because
an (m + 1)-rationalizable strategy need not be level-(m + 1), the strategy s} might well be consistent with
RmBR in some type structure, even though it is not level-(m + 1) for p. The analyst can only conclude
that sf is inconsistent with RmBR if the strategy is not (m + 1)-rationalizable. This is an implication of
Proposition 5.1.

In the restricted inference problem, the analyst is willing to make a substantive assumption about the

players’ beliefs:
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Identifying Assumption 1. There is some anchor p and some n > 1 so that the player who chose s}

has the beliefs associated with an n-type in a level-k type structure for p.

Theorem 5.1 implies that, despite this identification assumption, the nature of the inference does not
change: The analyst can conclude that s} is consistent with R(m — 1)BR, but cannot rule out that it is
also consistent with RmBR, unless s} is also fails (m + 1)-rationalizability.

Theorem 6.1 suggests a stronger conclusion, based on an additional auxiliary assumption above As-

sumption 1:

Identifying Assumption 2. If a player is an n-type in some level-k type structure for p, then the player

reasons according to R(n — 1) BR.

Under Assumptions 1-2, the analyst can conclude that s} is consistent with R(m — 1)BR and inconsistent
with RnBR for any n > m: Since, for each n > m + 1, s} is not level-n (for w), there is no level-k type
structure (for p) and n-type thereof ¢;, so that (s},¢;) is consistent with R(n — 1)BR. (This uses Theorem
6.1.) Then, the identifying assumptions rule out that the behavior s; was generated by a player that
reasons according to RmBR, a fortiori RnBR for any n > m.

It is worth emphasizing the nature of this approach to identification, especially relative to standard
critiques in the literature. It is understood that the level-k approach implicitly assumes that behavior is
generated by subjects who have (partial) beliefs (of some order) induced by an anchor. This assumption fits
with Assumption 1 and has itself received criticism. (Refer back to page 4.) The analysis here highlights the
importance of Assumption 2, above and beyond Assumption 1. A generous interpretation of Assumption
2 is: If subjects hold certain partial n*"-order beliefs, then there reason according to R(n — 1)BR.” Even
under this interpretation, it requires an assumption that particular nt"-order beliefs determine how a player

reasons about rationality—an assumption that would be hard to verify (or falsify) in practice.

Remark 6.2. [TODO: Add discussion about the difference in the conclusion on reasoning about rationality

Vs reasoning |

7 Applications

[TODO: Insert applications]

8 Discussion

A. Complete Level-k Type Structures and Hierarchies Consistent with the Anchor One
might conjecture that a complete level-k type structure for g induces all hierarchies of beliefs consistent

with the anchor. However, this is not the case. We begin with an example.

Example 8.1. Consider a two-player game where each S; = {0;,0;}. For each player i, there is a

hierarchy of beliefs h; o = (h},m , h?yD, ...) where it is commonly believed that the other player chooses O_;:

So, hin(O-;) =1 and /”LTDH(IZI,Z-7 .., h™ 5) = 1. Also, for each player i, there is a hierarchy of beliefs
hi = (h},h2,...) with h}(O_;) = 2, h"*N (O, ... k™, o) = 2, and A" (O, h™ o) = 5. (So, h?

"This is indeed generous. In particular, n-types are associated with certain partial n'"-order beliefs, but the partial
ntP-order beliefs do not uniquely determine whether a type is an n-type.
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assigns probability %S to “the other player plays O_; and believes I play 0O,;” and probability %s to “the
other player plays ¢_; and believes I play 0;.”)

Now consider an anchor g = (u1, u2) where, for each i, p;(0_;) = % Note, that h; is a hierarchy of
beliefs consistent with the anchor, since hj = p} - However, there is no level-k type structure (including
a complete level-k type structure) that induces the hierarchy h; = (h}, h?,...). We give the intuition why
here and complete the proof in Appendix D.

Fix a level-k type structure for o = (p; : ¢ € I) and, for each i € I, let C; = {T/™ : m = 1,2,...}
be a Borel cover so that (C; : ¢ € I) jointly satisfy conditions (i)-(ii) of Definition 4.1. Suppose, contra
hypothesis, there exists some type t; € T; with 6;(¢;) = h;. Then, there must exist some type t_; o € T_;
with _;(t_; 0) = h_;o. (See Lemma D.1.) But, there is no such type t_; o € T_;. (See Lemma D.2.)
Intuitively: The 1-types have first-order beliefs distinct from h})D. Since the 2-types must assign probability

one to 1-types, this implies that the 2-types have second-order beliefs distinct from h}ﬂ. And so on.

The example points to a more general phenomena. A level-k type structure (a fortiori, a complete
level-k type structures) cannot induce hierarchies of beliefs where the first-order beliefs coincide with
the anchor and higher-order beliefs assigns positive probability to beliefs that are inconsistent with the
anchor. As a consequence, it also cannot induce hierarchies of beliefs that assign positive probability to
such hierarchies. Etc. Put differently, level-k type structures (a fortiori, complete level-k type structures)
impose the substantive requirement: Not only are players beliefs consistent with the anchor, they believe

other players’ beliefs are consistent with the anchor, etc.® As a consequence:

Proposition 8.1. Fiz a non-degenerate anchor p, i.e., an anchor where no player assigns probability 1
to a strategy profile. If T is a level-k type structure for w, then T does not induce all hierarchies of beliefs

consistent with w.

One might instead hope for the following: If a hierarchy can be induced by a level-k type structure for
u, then any complete level-k type structure must also induce that hierarchy. However, a close inspection
of Definition 4.2 indicates why this need not be the case. While a complete level-k type structure requires
a rich set of 2-types, 3-types, etc., it does not require a rich set of 1-types.

The proof of Proposition 4.3 constructs a particular complete level-k type structure 7* = (T, 85 : i € I)
that does have a rich set of 1-types: For every belief v; € A(S_; x T*;) with marg g_.v; = p;, there is a
1-type in T;* with 5] (t}) = v;. For this reason, any hierarchy of beliefs that can be induced by a countable
level-k type structure can be induced by the constructed complete level-k type structure. Appendix B.4
discusses the technical difficulty in extending the result to any level-k type structure.

B. Complete Level-k Type Structures and Inference We saw that a complete level-k type struc-
ture need not induce all hierarchies of beliefs consistent with the anchor. Despite this, from the perspective
of inferring the level of reasoning about rationality, it suffices to focus on level-k and complete level-k
type structures. To understand why, recall that in any type structure, the set of strategies consistent
with R(m — 1)BR must be contained in the m-rationalizable strategies. (Refer to Proposition 5.1(i).)
The same holds if we replace “any type structure” with “any hierarchy structure” (i.e., any belief-closed

subset—or even any subset—of hierarchies of beliefs). Since any m-rationalizable strategy is consistent

80f course, one might want to implose this substantive requirement. The literature is, arguably, silent on whether this is
desired.
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with R(m — 1)BR strategy in a complete level-k type structure (Theorem 5.1(ii)), the focus on complete

level-k type structures is without loss of inference.

C. Definition of Level-k Type Structures A level-k type structure (Definition 4.1) requires that,
for each player i, we find a cover that satisfies two properties. It does not require that the associated covers
be unique. Indeed, they may not be; see Example D.2. It also does not require that the cover is a partition.
Indeed, they may not be; see Example D.1.

A complete level-k type structure (Definition 4.2) is associated with covers that satisfy three criteria.
While these covers need not be a partition, the construction of a complete level-k type structure in Propo-
sition 4.3 does involve partitional covers. We do not know if adding a partitional requirement imposes

substantive assumptions.

D. Definition of the Level-k Solution Concept Definition 6.1 allows for the fact that there may
be multiple best responses to a given distribution on strategies. This is not simply a theoretical possibility
but a feature of important level-k analyses. As pointed out in Remark 6.1, some papers instead assume
that players have a uniform belief about best responses. This imposes a secondary exogenous restriction
on beliefs—but one that depends on iterative best responses. This additional restriction only serves to
reinforce the message of the paper: It might suggest lower levels of reasoning about rationality than is
consistent with the data, since it may suggest that the level-k bound is lower than that suggested by
Definition 6.1.

Theorem 6.1 can be seen as providing foundations for this level-k solution concept, as specified by
Definition 6.1. From the perspective of foundations, it is important that we focus on this generalized
level-k solution concept. The epistemic approach takes, as given, the set of hierarchies of beliefs players
consider possible (i.e., a type structure); it then goes on to impose epistemic conditions relative to those
hierarchies (i.e., RmBR is applied relative to a type structure). The restriction to a uniform belief over
best responses proceeds in a different direction: It derives first-order beliefs based on best responses (to
other beliefs).

E. Foundations for Level-k Theorem 6.1 provides epistemic foundations for the level-k solution con-
cept. These foundations are quite different from foundations for other solution concepts: The foundations
rest on associating different hierarchies of partial beliefs with different epistemic conditions. In doing so, it
allows the researcher to make different epistemic assumptions (i.e., RIBR, R2BR, etc...) based on different
hierarchies of partial beliefs. By contrast, the typical approach (in epistemic game theory) will simply say
whether a hierarchy of beliefs is or is not consistent with a particular epistemic assumption.

The foundations are cast in a typical epistemic framework, where types are associated with hierarchies
of beliefs. This approach describes players as actors that do not face limitations on their ability to engage
in interactive reasoning—i.e., their ability to specify all sentences of the form “I think that you think that
I think ....” However, often, the level-k solution concept is motivated by a stipulation that players have a
limited ability to engage in such sentences. On the one hand, Theorem 6.1 indicates that this stipulation is
not needed—that the level-k solution concept does not require limits on the ability to engage in interactive
reasoning. On the other hand, one might wonder if the foundations hinge on unlimited ability to engage in

interactive reasoning. They do not: We can recast the analysis here in terms of an epistemic model where
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epistemic types only induce finite-order beliefs (as in Heifetz and Kets, 2018 or Kets, 2010). The key is
that the epistemic conditions of RmBR depend only on the (m + 1) -order beliefs. See Appendix D.

F. RmBR Behavior of k-Types: Dominated Anchors [NOTE: We had the lemma below. Do we
find it useful? Should we keep it?]

Lemma 8.1. Fiz an epistemic game (G, T), where T that is a level-k type structure for p. If, for each i,
wi(S—i\SL,) >0, then

L projs, (R N (S; x Ty™)) = proj ¢, R}

k>m
In the specific case where the anchor assigns positive probability to a dominated strategy, the R(m — 1)BR
behavior coincides with the R(m — 1) behavior of k > m types. This arises because, for such an anchor,
there are no k < m — 1 types consistent with R(m — 1)BR. (See Lemma D.3.) In particular, 1-types assign
positive probability to irrational strategy-type pairs; as such, they are inconsistent with R1BR. With this,
2-types assign probability 1 to strategy-type pairs inconsistent with R1BR; as such, they are inconsistent
with R2BR. And so on.

Appendix A Mathematical Preliminaries

It will be useful to begin with some mathematical preliminary.

Lemma A.1. Let Q,Qo be metrizable spaces. Then the mapping marg o, : A(Q1 x Q) — A(Qy) is

continuous.

Proof. Let proj : Q1 x Q2 — 1 be the projection mapping, i.e., mapping proj (wi,ws) = w;. Note
that proj is continuous: If Uy C € is open, then (proj)~'(U;) = Ui x Qg is open. Thus, proj :
A(Q x Q2) — A(y) is continuous. (See Theorem 15.14 in Aliprantis and Border (2007).) Finally,
observe that proj (v) = margg v. (For each event Ey C Qy, marg o v(E1) = v(E1 x Q2) = proj (v)(E1).)
[

Appendix B Proofs for Sections 3-4

B.1 Type Structures Induce Hierarchies of Beliefs

Fix a type structure 7 = (S_;, T3, 8; : € I). We will inductively define measurable maps pJ* : S_; xT_; —
X™ and 6" : T; — H™. First, set p; = projg . and &} = B; o ;. Note, p! is measurable and so B} is
measurable. From this and the fact that (; is measurable, §} is measurable.

Now, assume the measurable maps p]* : S_; x T_; — X[ and §;" : T; — H]™ have been defined. Set
P (sit—i) = (P (s—ist—i), 675 (t-4))-

Note, since pf* and 6™, are measurable, so is p["**. Then set 6" = B;"‘H o f3;. Since p/"*! is measurable
m—+1
i

The following standard Lemmata will be of use.

and so p is measurable. From this and the fact that (3; is measurable, 6;'”’1 is measurable.

Lemma B.1. For each t; € T;,0; (t;) = marg 5 B;(t;).
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Proof. Fix some s_; € S_;. Note,

8; (i) (s—i) = Bilti) ((pi) " ({s=i})) = Bi(ti)(S—i x T—y),

as desired. ®m
Lemma B.2. If 6;"(t;) = hi" then, for each n < m, 6} (t;) = marg x» h},
Proof. Insert proof. m

Lemma B.3. For each m > 1, p"  (s_i,t i) = (5_4, 0%, (t_5), ..., 8"5(t_y)).

i
Proof. For m = 1, this is immediate. Assume the statement is true for m > 2, so that p?“(sﬂ-ﬁ,i) =

(S_i, Jli(t—i), sy (STZ(t_Z)) Then, pm+2(3_i, t_z‘) = (S_i, 6£i(t—i)7 sy 6Ti(t—i), 5Ti+1(t_i)), as desired. ®m

?

B.2 Proof of Proposition 4.1

Fix a level-k type structure for pp = (p; : @ € I) and, for each i € I, let C; = {T)™ : m = 1,2,...} be a
Borel cover so that (C; : ¢ € I) jointly satisfy conditions (i)-(ii) of Definition 4.1. The following Lemma will
establish Proposition 4.1.

Lemma B.4. For each m > 1, n;*(6;*(T{")) € {p}",}-
Proof. The case of m = 1 is immediate. Assume the claim holds for m > 2. Fix some t; € Tim+1 and
write A" = 67" (t;). We will show that 7" (R" 1) = pFt.

Fix

EP = X < [T~ (o))
i

and note that E;'H'1 - Xim“. Note that
S X T™ C (pr+) =1 (B ),

To see this, fix (s_;,t—;) = (s5,t; : j # i) € S—; x T™,. By the induction hypothesis, 7] (67" (t]")) = p}’,,.
Thus, p"(s_i,t_;) € E;"“, as stated.

?

Now observe that E,ierl is measurable set, since each 7" is measurable. Thus,

RPHETTY) = Bilta) (o) THETT)) = Bilta)(S—i x T7) =1

and so h" T (E"*!) = 1. We use this fact to show that n"*!(h**!) = p*}'. In particular, suppose
™t (A = p. Note,

PUP™; w1 = hH@T) T (P W) = AN E) = 1.

Thus, p = p"; ! as desired. [NOTE: check that it is indeed obvious that (7™)~*({p™; ,}) = E/"*' ] m

B.3 Proof of Proposition 4.2

Proof of Proposition 4.2. Fix a level-k type structure for p, viz. T = (S_;,T;,5; : @ € I). For each
i € I, write C; = {T},T?,...} for Borel covers of T; that jointly satisfy conditions conditions (i)-(ii) of
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Definition 4.1.

Suppose, contra hypothesis, 7 is type-complete. First, let v; € A(S_; x T_;) where (i) marg g v; = 1
and (ii) for each m > 1, v;(S_; x T™) > 0. Since T is type-complete, there exists a type t} € T; with
Bi(t}) = v;. Using the fact that 8;(t})(S_; x T™) > 0 for each m, it follows that t} & T/ for all m > 2.
Thus, t} € T/ if and only if m = 1.

Now, observe that there is a ¢; € A(S_; xT_;) so that (i) marg g . ¢; # p;, and (i) ¢; (S—; x {t1;}) = 1.
Since T is type-complete, there exists a type t7 € T; with §;(t7) = ;. Given that marg g ¢; # p;, t7 € T}
Using the fact that t} € T/™ if and only if m = 1, it follows that t? € T/ if and only if m = 2.

Finally, observe that there is a & € A(S_; x T_;) so that (i) marg g_ & # p, (ii) &(S—; x {t1;}) >0,
and (iii) &(S_; x {t2,}) > 0. Since T is type-complete, there exists a type t; € T; with 3;(¢;) = &;. Given
that marg g & # i, t; & T}'. Since &(S—; x {t';}) > 0 and &(S_; x {t*,}) > 0 and there is no m with
tl, 12, € T/, it follows that t; ¢ T;/" for each m. This contradicts the type structure being a level-k type

structure for p. m

B.4 Proof of Proposition 4.3

B.4.0.1 Construction of a Complete Level-k Type Structure For each integer m > 1, let
7™ = [0,1] x {m}. Set T} = U,,>,Z;"™. Endow T;"™ with a metric d : T} x T} — R so that

d((z;,m;), (xe,me)) = ||z — x| if my = my and d((zj,m;), (e, me)) = 2 if m; # my.
Lemma B.5. Then (T}, d) is a Polish space.

Proof. Let D,, = (QN[0,1]) N {m} and note that each D,, forms a countable dense subset of [0, 1] x {m}.
Then set D = {J,,c;(Dm x {m}). The set D is countable. It is also dense in 7;*. (This follows from the
fact that each open set in T;* must either be an open set in [0,1] x {m} or a union of such open sets.)
Thus, (T}, d) is separable.

Next observe that, for any Cauchy sequence ((z;,m;) : j = 1,2,...), there must be some J so that

m; =my for all j > J. Thus, any Cauchy sequence converges and (T}, d) is complete. m
Lemma B.6.

(i) There exists an injective bimeasurable map x} : T/"' — A(S_; x T*;) so that x/(T;"") = {v; €
A(S_; xT*;) :marg g v = i3}

(ii) For each m > 2, there exists an injective bimeasurable map X7 : T;"™ — A(S_; x T*,) so that
XPTE™) = {vi € A(S_i x T*,) s v (S_y x T 1) =1},

K2

Proof. For part (i), begin by noting that both 7' = [0,1] x {1} and A(S_; x T*,) are uncountable
Polish spaces. (The latter follows from Lemma B.5.) Since {v; € A(S_; x T*;) : margg v; = pu;} is a
closed subset of A(S_; x T*,), it too is Polish. (See Aliprantis and Border, 2007, pg. 74.) Moreover,
{vi € A(S_; x T*;) : marg g_ v; = 13} is uncountable. So, the claim follows from the Borel Isomorphism
Theorem.

For part (ii), fix m > 2. Note that both ;"™ and A(S_; x T™~"*) are uncountable Polish spaces. So, by
the Borel Isomorphism Theorem, there exists a bimeasurable bijective map X7 : T.""™ — A(S_; x Ti"fl’*).

K2

Also note that there exists an injective bimeasurable map ¢™ : A(S_; x T %) — A(S_; x T*,) so that
P (AS_ x TV ) = {v; € A(S_i x T*,) : vi(A(S_i x T 1) =1},
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Thus, 1/3;" o Xi" is an injective bimeasurable map that satisfies the desired property. m

For each i, let 8 : T — A(S_; x T*,) be defined so that 8;(x,m) = x"(z,m). Note, under this
construction, B is not injective. But, if there exists (z,m) # (z/,m') but B (z,m) = £ (2',m’), then
either (i) (z,m) € [0,1] x {1} and (z',m’) & [0,1] x {1} or (ii) (z/,m') € [0,1] x {1} and (x,m) & [0,1] x {1}.

Lemma B.7. The map B} is bimeasurable.

Proof. Fix a Borel E C S_; x T*,. Since each " is measurable, each (x7")~¢(E) is Borel. Now observe
that
BB = J g TiE)
m>1
is Borel. Thus, 3} is measurable.
Likewise, fix a Borel E C T*. Since each x!" is bimeasurable, each x7*(E NT;"™) is Borel. From this

2 7

gi(E) = |J xrEnT™)

m>1

is Borel. Thus, 8 is bimeasurable. ® Note, this establishes that (T}, 5} : i € I) is a type structure. Let
pi™ e S_y x T*, — X™ (vesp., 6;"™ : T — H!™) be the map from strategy-type pairs to the m"-order

space of uncertainty (resp. be the map from types to m!"-order beliefs).
Lemma B.8. The type structure (T}, 37 : i € I) is a complete level-k type structure.

Proof. Observe that C; = {T,"™ : m = 1,2,...} is a Borel cover that, by construction, satisfies conditions

(1)-(ii)-(iii) of a complete level-k type structure. m

B.4.0.2 Induces Hierarchies of Countable Level-k Type Structures For the remainder of the
argument, fix a level-k type structure (T3, 5; : i € I). Then there exists a Borel cover C; = {T/™ : m =
1,2,...} that satisfies conditions (i)-(ii) of Definition 4.1. Let p/* : S_; x T_; — X" and 6] : T; — H!"

be the maps associated with this type structure.

Lemma B.9. Suppose, for each i, T; is countable. Then, for each m and each n, there is a map f"" :
T/ — T;°™ so that the following holds: For each t; € T/™, 6™(t;) = 6;" (f"" (t:)).

Before coming to the proof of Lemma B.9, let us note that the Lemma delivers an f;™" : T/ — T, that

m,n
—1

is Borel measurable and preserves n*"-order beliefs. This follows since T/™ is countable. The fact that f

is measurable is important in showing the existence of the map f;" tLmtl

Proof. The structure of the proof is as follows: We fix a type ¢; € T)" and show that there exists a type
tr € T/™ with 6" (tf) = 61(t;). The map f;™" : T/™ — T;"™ can then be constructed by setting f/""(¢;)

to be the associated t}. The proof is by induction on n.

n = 1 : First consider m = 1 and let f;"' : T} — 7" be an arbitrary map. Since t; € T} and f"'(t;) € T;""

K2

are both 1-types in their respective type structures, it follows that

marg g B;(t;) = p; = marg ¢ B (f (1))
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By Lemma B.1, 6} (t;) = margg_ f;(t;) and SN (fHN () = marg Sfi/é’;‘(fil’l(ti)). From this, the claim
follows.

Next consider m > 2. Fix some ¢; € T;". Note, there exists some v; € A(S_; xT™;) so that marg g . v; =
marg g f3i(t;) and v;(S_; X T*"') = 1. By construction, there exists some ¢ € T/ so that 5% (t}) = v;.
Now notice that

o1 (t;) = marg g B;(t;) = marg g v; = 0,7 (7).

K2 7

(The first and last equality follows from Lemma B.1. The middle equality comes from the definition of v;.)

From this, the claim follows.

n > 2 : Suppose the claim holds for n > 1. We show that it also holds for n + 1.
First consider m = 1. Note, by the induction hypothesis, for each player j, there exists a mapping

fir o Ty — Tj so that f'(t;) = f""(t;) for some m with t; € T;". (Note, the choice of m does not

matter-we only require that t; € ij.) So the product map f*, : T_; — T7, satisfies the following
property:
*, 1
P (s_intog) = P (s, ST (E20)).

(This uses Lemmata B.2-B.3.) Thus, for each event E™}* C X" x H",,

(P ) THERTY) = (d s x f7) (o T ERTY), (1)

(2

where id _; : S_; — S_; is the identity map.

Fix some t; € T}'. Let v; € A(S_; x T*,) be the image measure of f3;(t;) under (id _; x f";). By

construction, there exists a type t € Ti*’1 with 87 (t¥) = v;. It remains to show that 6" 7! (t¥) = ST,

Fix some event E"}* C X x H",. Note,
o (B = v (7™ (B
= Bilt) ((Gd s x 1)~ (™7 B )

= Bi(t:) (P} 7HET)
= o7 () (B,

where the third line uses Equation 1. This establishes &, (t*) = 671(t;).

(2

Next consider m > 2. By the induction hypothesis and Lemmata B.2-B.3, for each t_; € Tf"”[l,

Py (i ta) = o7 " (s ST (80),

Thus, for each event Efjl CXP'x H",,
(i) THEMT) N (S—s x T = (id g x [0 T (o™ THEM T N (S x THTY). (2)

Fix some ¢; € T™. Let v; € A(S_; x T*,) satisfy the following: For each E*, C S_; x Tj’imfl,

vi(E*;) = Bit:)((id —y x f77 ™) "HEE,))
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and v;(S_; x (T*\T*™ 1)) = 0. Since B;(t;)(S_; x T™ ') = 1, this is a well-defined measure in A(S_; x
T_;) and, moreover, v;(S_; X T*’mfl) = 1. By construction, there exists a type ¢t} € T,""™ with B} (t}) = v;.
It remains to show that 67" (¢) = 671 (¢,).

Fix some event E™7* C X x H",. Note,

o7 () = vl (o) (B
A(Zanh E”“)) n(S-i x Ti;’"*))

) (En+1
?“) e

N (S-i X Tini_l))

)
)

where the second line uses the fact that v;(S_; x Tj’imfl) = 1, the third line follows from the construction
of v;, the fourth line follows from Equation 2, and the fifth line uses the fact that 8;(t;)(S_; x T~ ') = 1.
This establishes 87" (t) = 67 1 (t;). m

Remark B.1. [TODO: Insert discussion of the difficulty in extending the previous result to any level-k type

structure]

Appendix C Proofs for Sections 5-6

C.1 Proofs for Section 5

Lemma C.1. Let J; : S; — A(S_;) be a correspondence with
Jz(sz) = {Vi S A(S_z) 18 € IBRZ[VJ}

Then J;(s;) is closed-valued. Moreover, if s; € S}, then J;(s;) is non-empty valued.

Proof. Let 7; : S; x A(S_;) — R be defined by

i(si, 1) E mi(Si, 5—i)vi(s5—s).

S_i

It follows from Theorem 15.3 in Aliprantis and Border (2007) and the fact that S; is finite that 7; is
continuous. Moreover, since S; x A(S_;) is compact, #; is bounded. As a consequence, the function
T . S,L X S,L X A(S,Z) — R defined by

i(8i, 13, v5) = (85, Vi) — W73, 14)

is continuous and bounded.

Now, ﬁX asequence (v}, v2,...) with each v¥ € J;(s;). Then, for each v¥ and each r; € S;, 7;(ss, i, vF) >
0. If (v},12,..
and Border, 2007, which uses the fact that 7; is continuous and bounded.) Thus, v; € J;(s;) and J;(s;) is

closed. m

.) converges to v; then, for each r; € S;, 7;(s;,r:,v;) > 0. (See Theorem 15.3 in Aliprantis
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Lemma C.2.
(i) If E_; is Borel then B;(E_;) is Borel.
(i) If E_; =0, then B;(E_;) = 0 and so Borel.

Proof. Part (i) follows from Lemma 15.16 in Aliprantis and Border (2007) and the fact that f; is measur-

able. Part (ii) is immediate. m

Lemma C.3. For each m, the sets R]* are Borel.

Proof. The proof is by induction on m.

m = 1: Fix a strategy s; and let
O(s;) = {vi € A(S_; x T_;) : 5; € BR;[marg g_ ]}

By Lemma C.1 and Lemma A.1, OJs;] is closed. From this and the fact that S; is measurable, each
{si} x B;1(O[si]) is Borel. Now observe that

U ({si} x B71(O(s:)))

5;€8

and, therefore, R} is Borel.

m > 2: Assume that, for each ¢, R]" is Borel. As such, each R™,

—1

is also Borel. So by Lemma C.2(i), R}

is Borel. m

C.2 Proof of Theorem 6.1

Proposition C.1. Fiz an epistemic game (G,T) where T is a level-k type structure for u. Then:
(i) proj s, (RN (S x TY)) = L [u], and
(it) for each k > 1, proj g (R¥ N (S; x T/™)) € L.

Proof. Begin with part (i). Fix some s; € proj g, (R} N (S; x T}')). Then there exists some ¢; € T} so that
(sirti) € Ry. As such, s; € BR;[marg 5 (;(t;)] and marg g  Bi(t;) = p;. So s; € L}[u]. Conversely, fix
s; € L}[p]. Then s; € BR;[u;] and, for each t; € T}, marg g fB;(t;) = pi- Thus, {s;} x T} € Ry N(S; x T}).
As such, L}[u] C proj g, (R} N (S; x T})).

The proof of part (ii) is by induction on m. The case of m = 1 follows from part (i). Assume the
claim holds for m. Fix some s; € proj g, (R{"™" N (S; x T;"*")). Then there exists some ¢; € T;" " so that
(si,t;) € R"T'. As such, s; € BR;[marg g f;(t;)]. Moreover, B3;(t;)(R™ N (S—; x T™)) = 1. So, by the
induction hypothesis, marg g _3;(t;)(L™;) = 1. Assuch, s; € LI"™". m

Proof of Theorem 6.1. Part (i) is Proposition C.1. So we focus on part (ii). Throughout, fix a
complete level-k type structure for g with covers C; = {T" : m = 1,2,. ..} satisfying conditions (i)-(ii)-(iii)

of Definition 4.2. The proof is by induction on m.
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The case of m = 1 is part (i) of Proposition C.1. So, assume the result holds for m. By part (ii) of
Proposition C.1, it suffices to show that

L € proj g, (RPN (S x T™).

Fix s; € L?“. Then there exists some v; € A(S_;) such that s; € BR,[v;], and v;(L™,) = 1. We will use
v; to construct a o; € A(S_; x T_;) so that: (i) marg g 2 = vy, (ii) 23(S_s x T™;) = 1, and (iii) for each
n <m, ;(R";) = 1. We then show that this suffices to deliver the result.

Step 1: By the induction hypothesis, for each player j, there exists a mapping 7;" : L7 — T} that satisfies
the following property: For each s; € LT, (s;,7/"(s;)) € R N (S; x Tf"). Let 7™ : L™, — T™ be the
associated product map. For each s_; € L™, set 0(s_;, 7™ (s—;)) = v(s_;) and, for each (s_;,t_;) €
S_i x T_;\(gr(t™)), set ¥(s_;,t_;) = 0. This gives a &, € A(S_; x T_;). By the construction and the fact
that T is Borel, we have #;(S_; x T™) = 1. By the construction and the fact that each R"; is Borel, we

have that, for each n < m, ;(R™,) = 1.

Step 2: By completeness, there exists a type t; € TT{H with 3;(t;) = 0. Since marg g SBi(t;) = v; and
s; € BR;[v;], it follows that (s;,t;) € R}. Since, for each n < m, Bi(t;)(R™,) =1, (si,t;) € R"™'. m

C.3 Result for Section 6.3

Lemma C.4. Fiz an anchor . For each m > 1 and each n > m, L} C S".

Proof. The proof is by induction on m. For m = 1 and each n > 1, it is immediate that L? C S}; thus,
the result holds for m = 1. Suppose the result holds for m > 1. Fix n > m and note that s; € L?'H if
and only if s; is a best response under some v; € A(S_;) with v;(L",) = 1. By the induction hypothesis,
L™, C 8™ and so 1;(S™) = 1. Thus, s; € S™"'. m

Appendix D  Proofs for Section 8

D.1 Proof of Proposition 8.1

The proof is analogous to Example 8.1: Since each |S;| > 2, take {d;,<;} C S;. Fix a non-degenerate
anchor p, i.e., an anchor where each u; does not assign probability 1 to some strategy. Then, for each 1,
there exists some strategy s_; € S_; so that u;(s—;) € (0,1). Without loss of generality, suppose that, for
each 4, this strategy profile is O_;.

Inductively define A}’ so that hj (0_;) = 1 and thl(D_i, c b g) =10 Set hip = (hig, hig, .- .).

Likewise, for each player i, inductively define h?" as follows: First, set h} = p;. Second, h™(O_;, hl—i,mv cen b ) =
p € (0,1;(0_;)]. (Note, p does not depend on m.) Set h; = (h},h?,...). Proposition 8.1 will follow from

the following two Lemmata.

Lemma D.1. Fix a type structure T = (S_;, Ty, 5; : i € I). If there exists a type t; € T; with §;(t;) = hy,
then there must be a type t_; o € T—; with 6_;(t_;n) = h_; 0.
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Proof. Suppose there is a type t; € T; with §;(¢;) = h;. Note, for each m > 1,
h?Hl(Dfia hlfi,mv B hTi,D) =p
or, equivalently, ﬂl(tz)(EZmH) = p for
B = (o) T ({0 b o, B ).

Observe that the sets EJ* are decreasing, i.e., for each m > 2, B! C E™. Since (8;(t;)(EM) : m > 2) =

(PP ps-- ),
p= lim f;(t:)(E") = Bi(ti)( M EM).

m>2
(See, e.g., Theorem 10.8 in Aliprantis and Border (2007).) Thus,

() E" #0,

m>2

i.e., there exists some type t_; € T_; with 6_;(t_;) = (h'; 5,h?, 5, ...), as required. =

Lemma D.2. If T = (S_;,T;,5; : i € I) is a level-k type structure for p, then there is no type t; o € T;
with (Si(ti’g) = hi’g.

Proof. For each i € I, let C; = {T/™ : m = 1,2,...} be a Borel cover so that (C; : i € I) jointly satisfy
conditions (i)-(ii) of Definition 4.1. We will show that, for each m > 1, and each ¢; € T}, 6" (t;) # hi'5.
The proof is by induction on m.

The case of m = 1 is immediate: If ¢; € T}, 6; (t;)(0_;) # 1 and so 6} (t;) # h} 5. Suppose then that
the claim holds for m. Fix ¢; € T;"*'. By the induction hypothesis,

(P NSz x {(h s gs - A o)D) N (S—i x T7) = 0.
Since B;(t;)(S—; x T™) =1,
Bi(t:)(( ;n+1)—1(57i X {(hlfi,ma ce hTi,D)})) =0

and so 6;" 1 (t;) # hZ‘DH. ]

D.2 Properties of Level-k Type Structures

Example D.1. This example shows that, for a given level-k type structure, we may not be able to choose
the cover to be a partition. As such, we may have that a type is both a k-type and an ¢-type for every
associated cover.

Construct an S-based level-k type structures for p, viz. T = (S_;,T;, B; : ¢ € I), as follows: For each i,
take T; = N;. Choose f3; so that it satisfies the following properties. First, marg 5 . f3;(t;) = p; if and only
if t; € {1,3}. Second, Suppmarg ;. S3;(1) = T_,. Third, 5;(2)(S_; x {1}) = B;(2)(5_; x {3}) = 1. Fourth,
for each k > 2, B;(k+1)(S—; x {k}) = 1.
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This is a level-k type structure for u. We can choose the cover {T/™ : k = 1,2, ...} so that T}! = {1, 3}
and, for each k > 2, T)™ = {k}. This cover is non-partitional. However, any cover must be non-partitional.
To see this, fix a cover {U} : k =1,2,...}. Since Suppmarg 3;i(1) = T, it must be that 1 € U}. So,
U} is either {1} or {1,3}. If U} = {1} then U2, = 0. So we must have U} = {1,3} and, from this, it

follows that U? = {2}. But this implies that U} = {3}. Thus, any cover must have U! N U} # 0. O

Example D.2. This example shows that, for any anchor p, there may be a level-k type structure for p
where the associated Borel cover is not unique. As a result, a type t; may be a k-type for one associated
cover and an {-type for another associated cover, despite the fact that k £ £.

Fix an anchor pu. Construct a type structure as follows: For each i, take T; = N,. Choose f; so
that it satisfies the following properties. First, marg g . f3;(t;) = p; if and only if ¢; € {1,3}. Second,
Suppmarg _,3i(1) = T_;. Third, for each k > 1, B;(k +1)(S—; x {k}) = 1.

This is a level-k type structure for . Notice, we can take the cover {T7™ : k =1,2,...} so that /™ = {k}
for each k. This cover is a partition. However, there is a second non-partitional cover {UF : k = 1,2,...}
with U} = {1,3} and, for each k > 2, UF¥ = {k}. Under the first cover, 3 is a 3-type, while under the
second cover, 3 is both a 1-type and a 3-type. a

D.3 Finite-Order Belief Type Structures

Definition D.1. A finitary S-based type structure is some T = (S_,»,Ti,//;’i : 1 € I) where,
(i) for each i, T; is a metrizable set of types for i with T; N {d} = and
(ii) for each i, Bi: T, — A(S_; x f_i) U {d} is a measurable belief map for i.

Say (s;,1;) is rational if §;(f;) € A(S_; x (T_; U{d})) and satisfies the condition in Definition 5.1. Say
i; believes an event E_; if §;(f;) € A(S_; x (T_; U{d})) and #; satisfies the condition in Definition 5.2.

We define RmBR, analogously to Definition 5.3. In particular, we write ]:211 for the set of rational
strategy-type pairs and R’Z-”H for the set of strategy-type pairs which satisfy rationality and m®-order
belief of rationality.

Each ordinary type structure is also a finitary S-based type structure. With this in mind, we focus
on showing that the RmBR predictions of a finitary type structure can be replicated in an ordinary type
structure. In doing so, we will focus on type structures that are first-order complete: Call T first-order

complete if, for each v; € A(S_;), there exists some #; € T; with marg S_ﬁi (t;) = v;.

Proposition D.1. Fiz a game with no weakly dominant strategy. Let T = (S—i, T, B i€ I) be a finitary
S-based type structure that is first-order complete. Then, there exists an ordinary S-based type structure
T =(S_i,T;, B; - i € I) with each T; C T; so that

(i) for each t; € T;, (s;,t;) € R if and only if (s;,t;) € RZ"’ and
(ii) proj g, Ri"* = proj 51:3:”

To prove Proposition D.1, we will make use of the following fact: If a game has no weakly dominant
strategy for 4, then we can find a mapping f; : S; = A(S_;) so that, for each s; € S;, s; & BR;[f;(s;)]. We

make use of these mappings below.
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Proof of Proposition D.1. Fix a game with no weakly dominant strategy and an associated finitary
S-based type structure that is first-order complete, viz. 7. Since there are no weakly dominant strategies,
we can find mappings f; : S; — A(S_;) so that, for each s; € S;, s; € BR[f;(s;)]. Since T is first-order
complete, there are mappings 7; : S; — T} such that marg siiBi(Ti(Si)) = fi(s;). Since S; is finite, 7; is
measurable.

With this background, we can construct 7. Let T; = Tl\{tZ eT;: Bl(ti) = d}. Observe that T; is a
Borel subset of T}. (This follows from the fact that ﬁl is measurable.) Endow T; with the relative topology
and note that it is metrizable.

Observe that, by construction, 7;(S;) C T;. As such, write 7; : S; — T; for the restriction of 7; to the
range T;. Note that 7; is also measurable. Write (id _; x 7_;) : S_; x S_; = S_; x T_; for the associated
product mappings. That is, (id _; X 7_;) is a mapping where, for each s_; € S_;, (id —; X T—;)(s_4,5_;) =
(s—i,T—i(8—;)). Observe that, since id _; and 7_; are both measurable, (id _; x 7_;) is measurable.

We now construct ;. To do so, it will be convenient to derive the mapping from two auxiliary mappings,
B9 and 5Y. Let T be the set of t; € T; with B; (t;)(S—ixT_;) =1. Let T? = T;\T;. Since f3; is measurable,
both T and 77 are measurable. Take 87 : TY — A(S_; x T_;) so that, for each ¢; € T?, B7(t;) is the
restriction of Bi(ti) to S_; x T_;. Note that 87 is measurable. Take 57 : T? — A(S_; x T_;) so that,
for each t; € TP, B7(t;) is the image measure of marg S_iBi(ti) under id _; x 7_;. Note, 5f is measurable.
Finally, let

B2(ty) ift; € T?,

Bi(ti) =
ﬁf(ti) if t; € TZ-O.

Note that ; is measurable since 17, T?, 87, and B are each measurable.

Finally, we show that, for each m > 1 and each ¢; € T}, (s;,t;) € R if and only if (s;,t;) € R;". This
will imply that, for each m > 1, proj g, R{" = proj g, (RN (S; x T;)). Now observe that, for each m > 1,
proj S(R;” N (S; x T;)) = proj SR;” As such, for each m > 1, proj g, Ri"* = proj SR;"

In fact, we will show a slightly stronger claim:
(i) For each m > 1 and each t; € T}, (s;,t;) € RI™ if and only if (s;,t;) € R:”
(ii) For each m > 2 and each t; € T?, S; x {t;} N R = { and S; x {t;} N R = (.

The proof is by induction on m.

m = 1: Fix t; € T;. By construction, marg S_iﬁi(ti) =marg g  fBi(t;). As such, (s;,t;) € R} if and only if
(Si, ti) S Rll

m = 2: Fix t, € T;. If t; € T7, then t; believes R! . if and only if ¢; believes ]?1_1 (This follows from

the construction.) If t; € T?, then t; does not believe R;. (This follows from the fact that R', N
(S_; x T_;\T_;) = (.) Thus, we must show that t; does not believe R, To see this, observe that
Bi(ti)(S—; x 7—;(S—;)) = 1 and, by construction, (S_; x 7_;(S_;)) N RL, = 0. As such, ¢; does not believe

RL,.

m > 3: Assume the claim holds for m > 3 and we show that it also holds for m + 1. Fix t; € T;. If
t; € T7, then t; believes R™,; if and only if ¢; believes RT¢~ (This follows from the construction.) If ¢; € T7,
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then by the induction hypothesis, (S; x {t;}) N Ry = @ and (S; x {t;}) N R = 0. As such, if t; € T,
(S; x{t;}H) N RZT”H =0 and (S; x {t;}) N R:ﬂ—&-l —0 m

D.4 RmBR Behavior of k-Types

Lemma D.3. Fiz an epistemic game (G,T), where T that is a level-k type structure for p. If, for each i,
pi(S—\SL;) >0, then
U (R0 (S x18) = |J (R0 (S x T))

k>m E>1

for each m.

Proof. The proof is by induction on m. For m = 1, the claim is immediate. So suppose that m > 2.
We will show that, for each k < m and each (s;,t;) € S; x TF, (si,t;) & Rf“. From this it follows that
(5i,t;) ¢ R™ and so R N (S; x TF) = ().

The proof is by induction on k. For (s;,t;) € S; x T}, marg 5 f;(t;)(S—:\S;) > 0 and so (s;,t;) & R?.
Assume that the claim holds for k < m — 2. If (s;,t;) € S; X TZ-]“‘H7 Bi(t:)(S—; x T*,) = 1 and so, by the
induction hypothesis, 8;(t;)(R*T') = 0. Thus, (s;,t;) ¢ RF*2. =

Proof of Lemma 8.1. By Lemma D.3,

U ®rn(six1h)) = B0 (S x ™) = Ry,
k>m E>1

from which the claim follows. =

References

Alaoui, Larbi and Antonio Penta. 2016. “Endogenous depth of reasoning.” The Review of Economic Studies
83(4):1297-1333.

Alaoui, Larbi, Katharina A Janezic and Antonio Penta. 2020. “Reasoning about others’ reasoning.” Journal
of Economic Theory 189:105091.

Aliprantis, C.D. and K.C. Border. 2007. Infinite dimensional analysis: a hitchhiker’s guide. Springer
Verlag.

Battigalli, P., A. Friedenberg and M. Siniscalchi. 2012. Strategic Uncertainty: An Epistemic Approach to
Game Theory. (Working Title).

Battigalli, P. and M. Siniscalchi. 2002. “Strong Belief and Forward Induction Reasoning.” Journal of
Economic Theory 106(2):356-391.

Brandenburger, A. and E. Dekel. 1987. “Rationalizability and Correlated Equilibria.” FEconometrica
55(6):1391-1402.

»”

Brandenburger, A. and E. Dekel. 1993. “Hierarchies of Beliefs and Common Knowledge.
Economic Theory 59:189-189.

Journal of

34



Brandenburger, Adam, Alexander Danieli and Amanda Friedenberg. 2021. “The implications of finite-order
reasoning.” Theoretical Economics 16(4):1605-1654.

Brocas, Isabelle, Juan D Carrillo, Stephanie W Wang and Colin F Camerer. 2014. “Imperfect choice
or imperfect attention? Understanding strategic thinking in private information games.” Review of
Economic Studies 81(3):944-970.

Camerer, C., T. Ho and J. Chong. 2004. “A Cognitive Hierarchy Model of Games.” The Quarterly Journal
of Economics 119(3):861-898.

Cooper, David J, Enrique Fatas, Antonio J Morales and Shi Qi. 2024. “Consistent depth of reasoning in

level-k models.” American Economic Journal: Microeconomics 16(4):40-76.

Costa-Gomes, M., V. Crawford and B. Broseta. 2001. “Cognition and Behavior in Normal-Form Games:
An Experimental Study.” Econometrica 69(5):1193-1235.

Costa-Gomes, Miguel A and Vincent P Crawford. 2006. “Cognition and behavior in two-person guessing

games: An experimental study.” American economic review 96(5):1737-1768.

Crawford, Vincent P and Nagore Iriberri. 2007. “Fatal attraction: Salience, naivete, and sophistication in

experimental “hide-and-seek” games.” American Economic Review 97(5):1731-1750.

Friedenberg, A. 2010. “When do Type Structures Contain all Hierarchies of Beliefs?” Games and Economic
Behavior 68(1):108-129.

Friedenberg, A. and T. Kneeland. 2024. “Beyond Reasoning about Rationality: Evidence of Strategic

Reasoning.”. https://www.amandafriedenberg.org/working-papers.

Friedenberg, Amanda and H Jerome Keisler. 2021. “Iterated dominance revisited.” Economic Theory
72(2):377-421.

Georganas, Sotiris, Paul J Healy and Roberto A Weber. 2015. “On the persistence of strategic sophistica-
tion.” Journal of Economic Theory 159:369-400.

Ghosh, Sujata, Aviad Heifetz and Rineke Verbrugge. 2016. “Do players reason by forward induction in
dynamic perfect information games?” arXiv preprint arXiv:1606.07521 .

Ghosh, Sujata and Rineke Verbrugge. 2018. “Studying strategies and types of players: Experiments, logics
and cognitive models.” Synthese 195(10):4265-4307.

Harsanyi, J.C. 1967. “Games with Incomplete Information Played by “Bayesian” Players, I-III. Part 1.
The Basic model.” Management Science pp. 159-182.

Healy, Paul J. 2024. “Epistemic experiments: Utilities, beliefs, and irrational play.” Unpublished
manuscript, Ohio State University, Columbus, OH .

Heifetz, A. and D. Samet. 1998. “Topology-free typology of beliefs.” Journal of Economic Theory 82(2):324—
341.

Heifetz, A. and W. Kets. 2018. “Robust Multiplicity with a Grain of Naivite.” Theoretical Economics
13:415-465.

35


https://www.amandafriedenberg.org/working-papers

Kets, W. 2010. “Bounded Reasoning and Higher-Order Uncertainty.” http://tuvalu.santafe.edu/

~willemien.kets/.
Kneeland, Terri. 2015. “Identifying Higher-Order Rationality.” Econometrica 83:2065-2079.

Li, Ying Xue and Burkhard C Schipper. 2020. “Strategic reasoning in persuasion games: An experiment.”
Games and Economic Behavior 121:329-367.

Liu, Shuige and Gabriel Ziegler. 2025. “Reasoning about Bounded Reasoning.” arXiv preprint
arXiv:2506.19737 .

Mertens, J.F. and S. Zamir. 1985. “Formulation of Bayesian Analysis for Games with Incomplete Informa-
tion.” International Journal of Game Theory 14(1):1-29.

”

Nagel, R. 1995. “Unraveling in Guessing Games: An Experimental Study.” The American Economic

Review 85(5):1313-1326.

Schipper, Burkhard C and Hang Zhou. 2024. “Level-k thinking in the extensive form.” Economic Theory
pp. 1-41.

Stahl, D. and P. Wilson. 1995. “On Players’ Models of Other Players: Theory and Experimental Evidence.”
Games and Economic Behavior 10(1):218-254.

Stahl, Dale O. and Paul W. Wilson. 1994. “Experimental Evidence on Player’s Models of Other Players.”
Journal of Economic Behavior and Organization 25(3):309-327.

Strzalecki, Tomasz. 2014. “Depth of reasoning and higher order beliefs.” Journal of Economic Behavior &
Organization 108:108-122.

Tan, T.C.C. and S.R. Werlang. 1988. “The Bayesian Foundations of Solution Concepts of Games.” Journal
of Economic Theory 45(2):370-391.

Wright, James R and Kevin Leyton-Brown. 2019. “Level-0 models for predicting human behavior in
games.” Journal of Artificial Intelligence Research 64:357-383.

36


http://tuvalu.santafe.edu/~willemien.kets/
http://tuvalu.santafe.edu/~willemien.kets/

	 Heuristic Treatment
	The Environment
	The Epistemic Game
	Type Structures and Hierarchies of Beliefs

	 Hierarchies of Beliefs Induced by the Anchor
	Hierarchies of Partial Beliefs
	Hierarchies of Beliefs Consistent with the Anchor

	 Level-k Type Structures
	Level-k Type Structure
	 Hierarchies Induced by Level-k Type Structures
	Complete Level-k Type Structures

	 The Inference Problem
	Rationality and mth-order Belief of Rationality
	The Unrestricted Inference Problem
	The Restricted Inference Problem
	Proof of Theorem 5.1

	 The Level-k Inference Problem
	The Level-k Solution Concept
	Epistemic Foundations for Level-k
	 Identifying Levels of Reasoning about Rationality

	Applications
	 Discussion
	Mathematical Preliminaries
	Proofs for Sections 3-4
	Type Structures Induce Hierarchies of Beliefs
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	 Proof of Proposition 4.3

	Proofs for Sections 5-6
	Proofs for Section 5
	Proof of Theorem 6.1
	Result for Section 6.3

	 Proofs for Section 8
	Proof of Proposition 8.1
	Properties of Level-k Type Structures
	Finite-Order Belief Type Structures
	RmBR Behavior of k-Types


