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Abstract

We examine the extent to which level-k analysis provides evidence of bounded reasoning in games.

Our opening example exhibits a game in which, regardless of the anchor used to initiate the level-k

reasoning process, a particular strategy is at most level 1. At the same time, this strategy is consistent

with rationality and (m−1)th-order belief in rationality (R(m−1)BR) for all integers m. The example

suggests that the categorization of strategies by the level-k model may overestimate the extent of

bounded reasoning on the part of players. However, there is an implicit identification assumption

underneath this claim, albeit one standard in epistemic game theory. This is the assumption of a “rich”

epistemic type structure that encodes many (sometimes, all) hierarchies of beliefs for the players. It

is this assumption that allows us to say that play of an m-rationalizable strategy is consistent with

R(m−1)BR. Our next result concerns the implications of a suitable identification assumption for level-

k analysis. Specifically, we build what we call a “complete level-k type structure” – that encodes the

presence of an anchor on which players build their hierarchies of beliefs, and no further restriction. One

might conjecture that, in this case, the condition of R(m− 1)BR would isolate the level-m strategies.

Our main theorem shows that this is false: R(m − 1)BR in a complete level-k type structure once

again returns all m-rationalizable strategies. Finally, we find an additional identifying assumption

under which epistemic analysis does deliver level-k strategies, and we also assess the verifiability of this

assumption.

The Level-k (Nagel, 1995; Stahl and Wilson, 1994, 1995; Costa-Gomes, Crawford and Broseta, 2001;

Costa-Gomes and Crawford, 2006) and the related cognitive hierarchy (Camerer, Ho and Chong, 2004)

models have played an instrumental role in behavioral game theory. They have gained prominence pre-

cisely because of their ability to explain departures from equilibrium in both experimental data and in

applications. At the same time, these models have come to serve as a lens through which experimenters

have assessed players’ reasoning—and bounded reasoning—in games.

This paper revisits the claim that the categorization of levels, as offered by the level-k literature, can

provide direct information about how players reason—be it reasoning about rationality, reasoning about
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irrationality, reasoning about unsophisticated behavior, depths of reasoning or steps in reasoning. It argues

that the current interpretation of the level-k model overestimates the extent to which there is evidence of

“bounded reasoning” in experimental data.

To make this point, we focus on the basic level-k model. That analysis begins with what is called an

anchor, i.e., an exogenous distribution about how the game is played. The anchor is associated with a

distribution of so-called level-0 behavior. A level-1 player has a belief that corresponds to the anchor and

plays a best response given that belief. The strategies that are a best response to such a belief correspond

to level-1 behavior. A level-2 player has a belief that assigns probability 1 to level-1 behavior and plays a

best response given such a belief. And so on.

To understand our approach, begin with a known result:

Baseline Result: Fix an anchor. If there is a k ≥ 1 so that a strategy is classified as

level k for that anchor, then the same strategy is k-rationalizable, i.e., survives k rounds of

rationalizability.

See, e.g., Costa-Gomes and Crawford (2006, pp. 1739) and Schipper and Zhou (2024, Proposition 1). As a

consequence of this result, if a strategy is classified as level k, then there is an m ≥ k so that the strategy is

m-rationalizable. (Note, the strategy is k-rationalizable and som-rationalizable for somem ≥ k.) Standard

results in epistemic game theory establish that a strategy is m-rationalizable if and only if it is consistent

with rationality and (m−1)th-order belief of rationality (R(m−1)BR). See, e.g., Brandenburger and Dekel

(1987) and Tan and Werlang (1988). Thus, if a strategy is classified as level k then there is an m ≥ k so

that the strategy is consistent with R(m− 1)BR.

The baseline result points to a preliminary approach for relating the categorization from the level-k

model to steps of reasoning about rationality:

If a strategy is classified as level k and there is nom > k so that the strategy ism-rationalizable,

then the strategy is consistent with R(k − 1)BR but is inconsistent with RmBR for all m > k.

Thus, a level of k captures the maximum level of reasoning about rationality consistent with

the data.

However, there are many examples where a strategy is classified as level k, despite the fact that the

strategy is consistent with m-rationalizability for m > k. This can occur because the strategy is, in fact,

also classified as level m > k for the same anchor. (See, e.g., Example 1 in Schipper and Zhou, 2024.) Or,

it can occur because the strategy is classified as level m > k for a different anchor. But, importantly, it can

also occur even if, for every possible anchor, the strategy is classified as at most level k. Section 1 provides

such an example. The example features a strategy that can be classified as level 1, for an appropriate

anchor. However, for any anchor, the strategy cannot be classified as level k ≥ 2, despite the fact that it

is consistent with rationality and common belief of rationality.

This last paragraph already suggests that the categorization given by the level-k model may overestimate

the extent of bounded reasoning: If a strategy is consistent with RmBR, then it is consistent with (m+1)-

steps of reasoning about rationality. But it may also be consistent with (m+ 1)-steps of reasoning about

rationality and subsequent steps of reasoning about irrationality. And, similarly, if a strategy is consistent

with RmBR, then it is also consistent with (m+ 1) steps of interactive reasoning, e.g., reasoning through

sentences of the form “I think, you think, . . ..”

That said, this conclusion rests on a particular identification assumption. To better understand the

assumption, return to the statement that any m-rationalizable strategy is consistent with R(m − 1)BR.
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There is an important background assumption: that players have a “rich” set of hierarchies of beliefs. The

implicit identification assumption is that the analyst cannot rule out hierarchies of beliefs. If the analyst

knew that the players themselves rule out certain hierarchies of beliefs, then the predictions of R(m−1)BR

may well be a strict subset of the m-rationalizable strategies. (See Chapter 7 in Battigalli, Friedenberg

and Siniscalchi, 2012 for examples.)

This implicit identification assumption is important for the level-k model. In the level-k model, the

analyst deliberately chooses an anchor and admits only hierarchies of beliefs that are faithful to the anchor.

The choice of the anchor (and so hierarchies) can rest on substantive arguments, such as which behavior

is viewed as salient in a particular setting. Or the analyst may hypothesize that hierarchies are faithful to

some anchor and attempt to estimate the anchor. In either case, the analyst hypothesizes that players rule

out hierarchies of beliefs inconsistent with the anchor.

With this in mind, we focus on a restricted inference problem, one where the analyst has an auxiliary

assumption that hierarchies of beliefs are faithful to an anchor. To formalize this inference problem, we

follow the approach in the epistemic game theory literature by modeling players beliefs with an epistemic

type structure. We focus on a class of such type structures, which we call level-k type structures. These

are type structures where players’ hierarchies of beliefs are generated by an anchor. An important level-k

type structure is, what we call, a complete level-k type structure. This is a level-k type structure that

induces a rich set of beliefs that are consistent with the anchor; in a sense, it is a type structure that does

not impose substantive restrictions on beliefs that go above and beyond the restrictions that stem from

the anchor. (See Sections 3.2 and 8.A.)

Level-k type structures are engineered to mimic the logic of the level-k model. Despite this fact, in a

complete level-k type structure, the predictions of R(m− 1)BR are exactly the m-rationalizable strategies.

(See Theorem 6.1.) Note, this is irrespective of the particular anchor that generates the complete level-k

type structure. The result has important implications for the restricted inference problem: For a particular

anchor, a strategy can be categorized as level k (but not level m ≥ k + 1); yet, there may be an m ≥ k

so that the same strategy is consistent with RmBR, even when hierarchies of beliefs are required to be

consistent with the very same anchor.

Why is there a disconnect between the R(m−1)BR predictions in a complete level-k type structure and

the categorization from the level-k analysis? The key is that the level-k model only imposes an exogenous

restriction on the players’ partial hierarchies of beliefs. To better understand what this involves, consider

a level-2 player, who has a belief that other players have a belief (about play) that corresponds to the

anchor. This is distribution on the set of first-order beliefs—i.e., a distribution on what others believe

about the play of the game. A second-order belief, however, is a joint distribution about the strategies and

first-order beliefs—i.e., a joint distribution about how others play the game and what they believe about

the play of the game. The level-k model obtains the full second-order belief endogenously, through the

solution concept. In doing so, it imposes an auxiliary requirement that a player cannot rationalize different

strategies played by different first-order beliefs. Indeed, in a complete level-k type structure, there will

be types that mimic such level-2 players, called 2-types, and those types will not be able to rationalize

different strategies played with different first-order beliefs. However, there will be other types—types that

are consistent with the partial hierarchies of beliefs induced by the anchor—which can rationalize different

strategies played with different first-order beliefs. That is, by explicitly modeling the hierarchies of beliefs

consistent with the anchor, we can see that there is a richer set of mth-order beliefs that are consistent

with the anchor.
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This raises the question: Are there different epistemic assumptions so that the predictions of round k

correspond exactly to the categorization of level k? If so, those assumptions would provide a sense in which

the categorization of a subject as level k does correspond to k steps of reasoning. Theorem 6.1 provides an

answer in the affirmative. On the plus side, the logic behind the result mimics the logic associated with the

level-k model, suggesting that our approach (throughout this paper) is tight. On the other hand, as we will

discuss, the epistemic analysis points to an arguably new identification assumption: That is, in concluding

that a categorization of level k reflects k steps of reasoning about rationality, the analyst is imposing an

additional identification assumption, one that goes beyond the requirement that hierarchies are induced

by an anchor. (See Identification Assumption 2.) Importantly, that assumption appears difficult to verify

in practice.

Literature This is not the first paper to point to difficulties in drawing inferences about how players

reason from the level-k categorization. The literature has pointed to at least four difficulties. First, it

may be difficult to ascertain the anchor that generates players’ beliefs. Toward that end, some papers

have suggested looking for a best-fitting anchor (Crawford and Iriberri, 2007; Wright and Leyton-Brown,

2019) or providing auxiliary evidence on the anchor (Costa-Gomes and Crawford, 2006; Brocas et al.,

2014). Second, it may be that the players themselves are uncertain about the anchor. (This is captured

by Strzalecki’s, 2014, cognitive rationalizability and is in the spirit of Section 2.3.2 in Alaoui and Penta,

2016.) Third, there may be that measurement error or other noise in the data, which may make it difficult

to infer a categorization of level k, from observed play. (See Stahl and Wilson, 1995, Costa-Gomes and

Crawford, 2006, and Cooper et al., 2024.) Fourth, it may be that the inferred levels on reasoning are not

portable across games. (See Georganas, Healy and Weber, 2015, Alaoui and Penta, 2016, Alaoui, Janezic

and Penta, 2020, and Cooper, Fatas, Morales and Qi, 2024.)

We abstract from these important concerns and looks at an idealized setting. In particular, it focuses on

a setting where there is one anchor that generates players’ hierarchies of beliefs and that anchor is known

to the analyst. So, neither the players nor the analyst face uncertainty about the anchor. Moreover, there

is no measurement error or noise in the data. In addition, it ignores concerns about portability. It argues

that, even in this idealized setting, the level k categorization may overestimate the extent to which there

is bounded reasoning.

The paper sits within a growing literature aimed at bringing ideas from epistemic game theory to bear

on experimental data. (Examples include Kneeland, 2015, Ghosh, Heifetz and Verbrugge, 2016, Ghosh and

Verbrugge, 2018, Li and Schipper, 2020, Brandenburger, Danieli and Friedenberg, 2021, Friedenberg and

Kneeland, 2024, and Healy, 2024.) Moreover, it can be viewed as providing a bridge between the level-k

literature and epistemic game theory. Schipper and Zhou (2024) and Liu and Ziegler (2025) are two recent

attempts to provide such a bridge. Schipper and Zhou uses ideas from epistemic game theory to motivate

a notion of level-k reasoning in extensive-form games. Liu and Ziegler models a level-0 player as one that

has different payoffs from those specified in the game; it then uses rationalizability concepts to analyze that

game of incomplete information and to draw connections to the level-k literature. Neither paper directly

discusses the identification problem that is the focus of this paper.

In the course of our analysis, we introduce the concept of a level-k type structure. This is a particular

epistemic type structure that induces hierarchies of beliefs consistent with the anchor. It differs from other

rich type structures, meant to model the level-k and cognitive hierarchy concepts, e.g., Kets (2010), Heifetz

and Kets (2018), and Strzalecki (2014). The type structures in Kets (2010) and Heifetz and Kets (2018)
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capture finite-order beliefs about a primitive set of uncertainty, where the players may face uncertainty

about the length of others’ finite-order beliefs; the type structure in Strzalecki (2014) captures hierarchies

of beliefs about numbers (interpreted as levels). Much like Kets and Heifetz and Kets, our framework

directly models beliefs about a primitive set of uncertainty. Unlike these papers, we don’t include types

with finite-order beliefs or beliefs about finite-levels. This stems from the differences in the questions the

sets of papers address. Here, we are interested in understanding the extent to which behavior is consistent

with high levels of reasoning; as a consequence, being able to rationalize the behavior with a type structure

that induces hierarchies of beliefs (as opposed to finite-order beliefs) is a plus. (See, also, the discussion in

Section 8.)

1 Heuristic Treatment

Consider the two-player common interest game in Figure 1.1, where Player 1 is denoted by P1 and Player

2 is denoted by P2. We begin by applying the standard level-k solution concept to the game.

.9, .9 1, 0 4, 1 1, 0

0, 1 4, 4 1, 0 4, 0

1, 4 0, 1 0, 0 0, 3

0, 1 0, 4 3, 0 3, 3

a2 b2 c2 d2

a1

b1

c1

d1

P2

P1

Figure 1.1: A Common-Interest Game

The level-k solution concept begins by fixing an exogenous anchor for each player. For Pi=P1,P2 this

is a distribution µi on the strategies the other player, Pj, can choose. The level-1 strategies for Pi are the

strategies that are a best response under µi. The level-2 strategies for Pi are the strategies that are a best

response under a belief that assigns probability 1 to level-1 strategies of Pj. And so on.

Figure 1.2 describes the level-k behavior in four examples. In each example, P1 and P2 have the same

anchor, i.e., µ1 = µ2: This is either the uniform anchor, the anchor where Pi assigns probability 1 to Pj

choosing aj , the anchor where Pi assigns probability 1 to Pj choosing cj , or the anchor where Pi assigns

probability 1 to Pj choosing dj . Notice, for each strategy si ∈ {ai, bi, ci} and each number m ≥ 1, there is

some anchor so that so that si is level-m for Pi.1

In each of these examples, there is no m so that di is level-m for Pi. If Pi has an anchor that assigns

.5 : .5 to cj : dj , then di would be level-1. But, regardless of Pj’s anchor, di cannot be be level-2. More

generally:

Claim 1.1. Suppose P1’s and P2’s anchors are given by (µ1, µ2). If di is level-m for Pi, then m = 1.

The key observation is that di is optimal only under a distribution that assigns positive probability to both

cj and dj .
2 Therefore, if di is level-2 for Pi, it must be that both cj and dj are level-1 for Pj. However,

1As standard, we refer to the solution concept as “level-k.” We use the index m to refer to a particular realization of k.
2When Pj is restricted to play a strategy in {aj , bj , dj} (resp. {aj , bj , cj}), di is dominated by a mixture of ai : bi (resp.

by ai).
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Uniform 1 to aj 1 to cj 1 to dj

Level-1 bi ci ai bi

Level-2 bi ai ci bi

Level-3 bi ci ai bi

Level-4 bi ai ci bi

Level-5 bi ci ai bi

· · · · · · · · · · · · · · ·

Figure 1.2: Level-k

there is no anchor µj under which cj and dj are both a best response.3 Thus, di cannot be level-2 for Pi,

regardless of Pj’s anchor µj . And, similarly, dj is not level-2 for Pj, regardless of Pi’s anchor µi. This, in

turn, implies that di is not level-3 for Pi. And so on, for any m ≥ 3.

The Basic Inference Problem To recap: The strategies d1 and d2 are level-1 for some anchor. But,

for any anchor and any m ≥ 2, d1 and d2 are not level-m.

Suppose the analyst only observes data about how the game is played (and not auxiliary data, say,

about players beliefs). In particular, suppose the analyst observes P1 play d1. What can the analyst infer

about how she reasons? Based on the level-k analysis, the analyst might be tempted to conclude that P1 is

rational—in the sense that she plays a best response to the anchor—but does not reason further. Language

used in the literature is that P1 believes believes P2 is nonstrategic, P1 reasons one step, or P1 has depth

of reasoning one.

However, in this game, the entire strategy set is rationalizable. Standard results in epistemic game

theory show that any rationalizable strategy is consistent with rationality and common belief of rationality.

(See, e.g., Brandenburger and Dekel, 1987 and Tan and Werlang, 1988.) Thus, the observation of d1 does

not, in and of itself, indicate that a P1 must believe P2 is not strategic.

More generally, the observation of d1 alone cannot point to a bound in the steps or depth of reasoning,

i.e., how many steps of “I think, you think, I think . . .” P1 can perform: P1 can only engage in rationality

and (m − 1) rounds of reasoning about rationality, if she can engage if m-steps of “I think, you think, I

think . . .” Thus, if behavior is consistent with rationality and common belief of rationality then it is also

consistent with an unbounded depth of reasoning.

Rationality and Common Belief of Rationality It will be useful to better understand what goes into

the statement that d1 is consistent with rationality and common belief of rationality. To better understand,

we revisit a standard epistemic model, as applied to Figure 1.1. A hallmark of the model is that it describes

the players hierarchies of beliefs about the play of the game. This is a necessary step: To specify whether

P1 (resp. P2) is rational, we must describe what beliefs P1 (resp. P2) holds about P2’s (resp. P1’s) play.

After all, whether a strategy is a best response for P1 depends on these first-order belief. By a similar

logic, to specify whether P1 does or does not believe P2 is rational, we must describe P1’s joint belief about

3If cj and dj have the same expected payoff, then the expected payoff of aj must be strictly higher.

6



P2’s strategy and first-order belief, i.e., about P2’s strategy and belief about P2’s play. After all, whether

a strategy is rational or irrational for P2 will depend on his first-order belief. And so on.

We model these hierarchies of beliefs by an epistemic type structure, in the spirit of Harsanyi (1967).

The type structure has two ingredients: First, for each Pi, there is a set of types Ti; in our example,

Ti = {ti, ui, vi, wi}.

Second, for each Pi, there is a belief map βi, which maps each type of Pi to a belief about the strategy-type

pairs of Pj; in our example

βi(ti)(cj , vj) = 1 βi(ui)(bj , uj) = 1 βi(vi)(aj , tj) = 1

and

βi(wi)(cj , vj) = βi(wi)(dj , wj) =
1

2
.

Each type induces hierarchies of beliefs about the play of the game. For instance, type ti assigns probability

1 to Pj playing cj , while type vi assigns assigns probability 1 to Pj playing aj . Since ti assigns probability

1 to (cj , vj), this implies that ti assigns probability 1 to “Pj plays cj and believes I play ai.” And so on.

See Section 2 for more details.

Now turn to rationality, belief in rationality, etc. Rationality is a property of a strategy-type pair. The

pair (ai, ti) is rational because ai maximizes Pi’s expected payoffs given the belief associated with ti: The

action ai is a best response to cj . In fact, the set of rational strategy-type pairs for Pi is

Ri = {(ai, ti), (bi, ui), (ci, vi), (di, wi)}.

Now observe that each type of Pi assigns probability 1 to “Pj is rational,” i.e., to the event Rj ; thus, each

type of Pi believes the other player is rational. So, Ri is also the set of strategy-type pairs for Pi that are

consistent with rationality and 1st-order belief of rationality. From here, we can iterate to conclude that

Ri is, in fact, the set of strategy-type pairs consistent with rationality and common belief of rationality

(RCBR). As a consequence, each of ai, bi, ci, and di are consistent with RCBR.

Hierarchies of Beliefs vs. Anchored Beliefs We have seen that the strategy di is, in fact, consistent

with RCBR. To show this, we described a specific model of P1’s and P2’s hierarchies of beliefs and pointed to

a type in that model, namely wi, so that (di, wi) is rational, believes Pj is rational, and so on. Importantly,

those hierarchies of beliefs were inconsistent with the idea that the players’ hierarchies are generated by an

anchor. Take, for instance, the case where P1’s and P2’s anchors (µ1, µ2) both assign probability one to

the other player Pj choosing cj . Type v1 has the first-order belief associated with P1’s anchor µ1 and type

t1 believes P2 has the first-order belief associated with P2’s anchor µ2. But, types u1 and w1 do not have

hierarchies of beliefs consistent with these anchor. Similarly, if P1’s and P2’s anchors (µ1, µ2) both assign

.5 : .5 to the other player Pj choosing cj or dj . Then, type w1 has first-order beliefs associated with P1’s

anchor. But no other type has hierarchies consistent with this anchor. And so on. (See Example 4.1.)

Arguably, the spirit of level-k analysis involves a restriction on the hierarchies of beliefs that players can

hold. In particular, the analysis imposes the substantive assumption that the players beliefs are generated

by a particular anchor. This assumption is important in categorizing a particular strategy as level-m for

7



some m ≥ 1.

This raises the question: Suppose players hierarchies of beliefs are generated by an anchor. In that

case, would the observation of di allow us the analyst to conclude that Pi’s behavior is inconsistent with

Pi being rational and believing Pj is rational? That is, would the observation of di point to a form of

bounded reasoning?

The Restricted Inference Problem To address the question, our analysis focuses on, what we call,

(epistemic) level-k type structures. Much as above, these are type structures that involve type sets and

belief maps for each of P1 and P2. But, now, the type set of Pi can be decomposed into a set of 1-types

(T 1
i ), a set of 2-types (T 2

i ), etc. The 1-types each have first-order beliefs associated with the anchor.

The 2-types each assign probability one to Pj having a 1-type (i.e., their marginal belief on Tj assigns

probability 1 to T 1
j ). And so on. Notice, a level-k type structure is defined relative to a particular anchor

and only induces hierarchies of beliefs consistent with that anchor. (See Proposition 4.1.) Thus, the type

structure cannot induce all hierarchies of beliefs.

A notable level-k type structure is, what we call, a complete level-k type structure. This is a level-k type

structure that satisfies the following requirement: For every belief that assigns probability 1 to the m-types

of Pj, there is an (m + 1)-type of Pi that holds induces that belief. A complete level-k type structure

induces a rich set of beliefs. (See Proposition 4.3 and Section 8-A.) Proposition 4.3 shows that there exists

a complete level-k type structure.

The main theorem provides the behavioral implications of rationality and mth-order belief of rationality

(RmBR) in a complete level-k type structure.

Main Theorem (Theorem 5.1). In a complete level-k type structure (for a particular

anchor), the predictions of RmBR are exactly the (m+ 1)-rationalizable strategies.

Thus, even when we focus on models of hierarchies of beliefs that are consistent with the anchor, each

(m+ 1)-rationalizable strategy is consistent with RmBR.

Return then to Figure 1.1. If we observe P1 play d1 we cannot conclude that there is a bound m

so that the behavior must reflect RmBR, even if we assume that the hierarchies of beliefs are generated

by a particular anchor. Thus, the categorization of d1 as level-1 does not allow us to draw a conclusion

about bounded reasoning—at least not without additional auxiliary assumptions about how players reason

or without a richer dataset. Section 6 discusses additional auxiliary assumptions and the difficulty of

verifying those assumptions in the data.

2 The Environment

We begin with mathematical preliminaries used throughout the paper. Fix a metrizable set Ω and endow

Ω with the Borel σ-algebra. We will refer to an element of the Borel σ-algebra as an event. Write ∆(Ω)

for the set of Borel probability measures on Ω and endow ∆(Ω) with the topology of weak convergence.

Given a measure µ ∈ ∆(Ω× Φ), write marg Ωµ for the marginal of µ on Ω.

Given a finite index set I and a collection of metrizable sets (Ωi : i ∈ I), write Ω−i =
∏

j∈I\{i} Ωj

and Ω =
∏

i∈I Ωj . Endow the product of metrizable spaces with the product topology. Given a second

collection of metrizable sets (Φi : i ∈ I) and measurable maps fi : Ωi → Φi, write f−i = Ω−i → Φ−i for the

8



associated product map, i.e., given ω−i = (ωj : j ̸= i), f−i(ω−i) = (fj(ωj) : j ̸= i). If each fi is measurable

(resp. continuous), then each f−i is also measurable (resp. continuous).

Fix metrizable sets Ω and Φ and let f : Ω → Φ be a measurable map. The image measure of f under

µ ∈ ∆(Ω) is a measure ν ∈ ∆(Φ) where, for each Borel E ⊆ Φ, ν(E) = µ(f−1(E)). Let f : ∆(Ω) → ∆(Φ)

map each ν ∈ ∆(Ω) to the image measure of f under ν. Note, f is measurable; if f is continuous, f

is continuous. (See, e.g., Friedenberg and Keisler, 2021, Lemma A.1, and Aliprantis and Border, 2007,

Theorem 14.14.)

2.1 The Epistemic Game

Throughout the paper, fix a game G = (Si, πi : i ∈ I): Here, I is a finite set of players, Si is a finite

strategy set for player i, and πi : Si × S−i → R is player i’s payoff function. The game is non-trivial, in

that each player has at least two strategies (|Si| ≥ 2). Extend πi to πi : Si×∆(S−i) → R in the usual way.

An epistemic game appends to the game a description of the players’ hierarchies of beliefs about the

play of the game. Following Harsanyi (1967), we use type structures to implicitly describe the hierarchies

of beliefs.

Definition 2.1. An S-based type structure is some T = (S−i, Ti, βi : i ∈ I) where,

(i) for each i, Ti is a metrizable set of types for i, and

(ii) for each i, βi : Ti → ∆(S−i × T−i) is a measurable belief map for i.

In an S-based type structure, each type of player i, ti, is mapped to a joint belief about the strategies and

types of the other players. Because the set of strategies is fixed throughout our analysis, we often refer to

an S-based type structure as, simply, a type structure. When each Ti is (at most) countable, we call the

type structure countable.

2.2 Type Structures and Hierarchies of Beliefs

The epistemic game describes the rules of the game, payoff functions, and hierarchies of beliefs about the

play of the game. The former two are captured by G and the latter is captured by a type structure. The

example in Section 1 is indicative of how types induce hierarchies of beliefs. In particular, each type t̃i

induces a belief on the strategies of other players, given by marg S−i
βi(t̃i). For instance, type wi’s first-

order belief assigns .5 : .5 to cj : dj . Moreover, because each type has a joint belief about the strategies

and types of the other player, each type has a joint belief about the strategies and first-order beliefs of the

other player. For instance, type wi assigns .5 to “the other player will play cj and believes that I will play

ai” and .5 to “the other player will play dj and assigns .5 : .5 to me playing ci : di.” These joint beliefs

constitute the type’s second-order beliefs. And so on.

The example is indicative of how type structures induce hierarchies of beliefs. To formalize this, begin

by inductively describing the set of mth-order beliefs of player i. Set X1
i = S−i and H

1
i = ∆(X1

i ); these

sets are each compact metric sets. Assume the sets Xm
i and Hm

i have been defined and are compact metric

sets. Set

Xm+1
i = {(s−i, h

1
−i, . . . , h

m
−i) ∈ Xm

i ×Hm
−i : if m ≥ 2 then, for each j ̸= i, margXm

j
hmj = hm−1

j }

9



and Hm+1
i = ∆(Xm+1

i ). These too are compact metric sets. (See Friedenberg, 2010, Lemma A1 and

Remark A1.) The set Xm
i is player i’s mth-order space of uncertainty. The set Hm

i is player i’s set of

mth-order beliefs. Then

H∞
i = {(h1i , h2i , . . .) ∈

∏
m≥1

Hm
i : for each m, margXm

i
hm+1
i = hmi }

is player i’s set of hierarchies of beliefs.

For each m ≥ 1, there is a natural mapping δmi : Ti → Hm
i , specifying each type’s mth-order belief.

Type ti’s first-order belief is simply the marginal of βi(ti) onto the strategies of the other players; that

is, δ1i (ti) = marg S−i
βi(ti). Type ti’s second-order belief, δ2i (ti) = h2i , is a joint belief about strategies

and first-order beliefs: The probability that h2i assigns to an event about S−i × H1
−i corresponds to the

probability that βi(ti) assigns to strategy-type pairs that induce that event. More precisely, for each event

E−i ⊆ X1
i ×H1

−i = S−i ×
∏

j ̸=i ∆(S−j),

h2i (E−i) = βi(ti)({(s−i, t−i) : (s−i, δ
1
−i(t−i)) ∈ E−i}).

Appendix B.1 formally describes the maps δmi : Ti → Hm
i . Given these maps, δi : Ti → H∞

i is defined by

δi(ti) = (δ1i , δ
2
i , . . .). If δi(ti) = hi (resp. δ

m
i (ti) = hmi ), say that type ti induces the hierarchy of beliefs hi

(resp. the mth-order belief hmi ). The set of hierarchies of beliefs for i induced by T is δi(Ti) ⊆ Hi.

Of particular interest is a type structure that is “rich,” in the sense that it induces all possible beliefs.

Definition 2.2. Call the type structure T = (S−i, Ti, βi : i ∈ I) type-complete if, for each i, βi is onto.

So, a type structure is type-complete if, for each belief i can hold (about S−i × T−i), there is a type of i

that holds that belief. That is, the type structure contains all possible beliefs about types. The canonical

constructions of a so-called universal type structure (e.g,. Mertens and Zamir, 1985, Brandenburger and

Dekel, 1993, Heifetz and Samet, 1998, etc) are each type-complete. When the type sets are compact and

the belief maps are continuous, a type-complete type structure induces all hierarchies of beliefs. (See

Friedenberg, 2010.)

3 Hierarchies of Beliefs Induced by the Anchor

The level-k solution concept is tied to an anchor µ = (µi : i ∈ I) ∈
∏

i∈I ∆(S−i); call µi i’s anchor.

Conceptually, an anchor specifies a first-order belief for each player i. This implicitly limits the hierarchies

of beliefs the players consider possible. However, importantly, the anchor alone does not uniquely pin down

those hierarchies. Instead, it restricts, what we will call, the hierarchies of partial beliefs. We next describe

how the anchor restricts the partial hierarchies and, in turn, restricts the hierarchies of beliefs.

Remark 3.1. The literature will often fix a symmetric game and look at symmetric anchors, i.e., anchors

where each player has the same belief about how others play the game. (There are important exception.)

Because we apply the ideas to arbitrary games (i.e., not necessarily symmetric games), we do not restrict the

anchors to be symmetric. To be sure, players’ anchors can be symmetric, but they need not be symmetric.

Likewise, anchors can involve a belief that is independent or correlated. They can involve degenerate or

non-degenerate beliefs. Etc.
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3.1 Hierarchies of Partial Beliefs

Set P 1
i = ∆(S−i) and note that it is a compact metric set. Assuming compact metric sets Pm

i have been

defined, set Pm+1
i = ∆(Pm

−i) and note that it too is a compact metric set. The set Pm
i is player i’s set

of mth-order partial beliefs. Note, when m ≥ 2, an mth-order partial belief differs from an mth-order

belief. For instance, a second-order belief is a joint belief about strategies and first-order beliefs, whereas

a second-order partial belief is a belief only about first-order beliefs. Write

P∞
i =

∏
m≥1

Pm
i

for the set of hierarchies of partial beliefs.

The anchor implicitly imposes a restriction on the mth-order partial beliefs that players consider possi-

ble. For instance, if i is a level-1 player, then i’s first-order partial belief must correspond to the anchor. If

i is a level-2 player, then i’s second-order partial belief must assign probability 1 to the first-order beliefs

µ−i := (µj : j ∈ I\{i}). And so on.

More generally, an anchor µ = (µi : i ∈ I) ∈
∏

i∈I ∆(S−i) uniquely determines mth-order partial

beliefs, pmi,µ: Set p
1
i,µ = µi. Assuming each pmi,µ ∈ Pm

i has been defined, let pm+1
i,µ ∈ Pm+1

i be the measure

with pm+1
i,µ ({pm−i,µ}) = 1. Write pi,µ = (p1i,µ, p

2
i,µ, . . .) and pµ = (p1µ, p

2
µ, . . .).

3.2 Hierarchies of Beliefs Consistent with the Anchor

There is a natural mapping from hierarchies of beliefs to hierarchies of partial beliefs, viz. ηi : H
∞
i → P∞

i .

To understand the mapping, consider ηi(h
1
i , h

2
i , . . .) = (p1i , p

2
i , . . .). Intuitively, p1i = h1i since there is no

distinction between first-order beliefs and first-order partial beliefs. Moreover, p2i = marg∆(S−i)h
2
i , since

a second-order partial belief simply provides information about beliefs over first-order partial beliefs and

first-order partial beliefs correspond to first-order beliefs. Since there is a distinction between second-order

partial beliefs and second-order beliefs, the relationship between h3i and p3i requires care.

To define the mapping ηi, it will be convenient to define sets that correspond to i’s mth-order space

of partial uncertainty, i.e., Y m
i : Set Y 1

i = S−i and, for m ≥ 2, Y m
i = Pm−1

−i . Note that Pm
i = ∆(Y m

i ).

Now, inductively define continuous maps η̂mi : Xm
i → Y m

i and ηmi : Hm
i → Pm

i : First, take η̂1i : X1
i → Y 1

i

and η1i : H1
i → P 1

i to be the identity maps; note that these are continuous. Next, assume continuous

maps η̂mi : Xm
i → Y m

i and ηmi : Hm
i → Pm

i have been defined. Define η̂m+1
i : Xm+1

i → Y m+1
i so that,

for each xm+1
i = (xmi , h

m
−i) ∈ Xm+1

i , η̂m+1
i (xmi , h

m
−i) = ηm−i(h

m
−i). Since each ηmj is continuous, η̂m+1

−i is

continuous. Now let ηm+1
i = η̂m+1

i
, so that ηm+1

i (hm+1
i ) is the image measure of hm+1

i under η̂m+1
i ; note

that ηm+1
i = η̂m+1

i
is continuous since η̂m+1

i is continuous.

The map ηi : H
∞
i → P∞

i is given by ηi(h
1
i , h

2
i , . . .) = (η1i (h

1
i ), η

2
i (h

2
i ), . . .). Thus it maps each hierarchy

of beliefs to its associated hierarchy of partial beliefs.

Definition 3.1. Say a hierarchy hi = (h1i , h
2
i , . . .) is consistent with the anchor µ = (µi : i ∈ I) ∈∏

i∈I ∆(S−i) if there exists some m ≥ 1 so that ηmi (hmi ) = pmi,µ.

If hi = (h1i , h
2
i , . . .) is consistent with the anchor, there is some mth-order belief that coincides with the

mth-order partial beliefs induced by the anchor. This captures the restriction on beliefs implicitly imposed

by the level-k solution concept. (Note, there, a player classified as level-m has mth-order partial beliefs

induced by the anchor, but may not have nth-order partial beliefs induced by the anchor for some n ̸= m.)

11



4 Level-k Type Structures

We will be interested in type structures that only induce hierarchies of beliefs consistent with the anchor.

This will be captured by a level-k type structure. This section defines such structures.

4.1 Level-k Type Structure

Fix a type structure T = (S−i, Ti, βi : i ∈ I). Say Ci = {Tm
i : m = 1, 2, . . .} is a Borel cover of Ti if

(i) each Tm
i is a non-empty Borel subset of Ti, and (ii)

⋃
m≥1 T

m
i = Ti. Note, a countably infinite partition

of Ti is a Borel cover, if each of its members is Borel. But, a Borel cover need not be a partition.

Definition 4.1. Call T = (S−i, Ti, βi : i ∈ I) a level-k type structure (for µ = (µi : i ∈ I)) if, for each

i, there exists a Borel cover Ci = {Tm
i : m = 1, 2, . . .} of Ti so that the following hold:

(i) If ti ∈ T 1
i , then marg S−i

βi(ti) = µi, and

(ii) For each m ≥ 1, if ti ∈ Tm+1
i , then βi(ti)(S−i × Tm

−i) = 1.

In a level-k type structure, we can decompose each player’s types into non-empty sets T 1
i , T

2
i , . . .. We will

refer to types in Tm
i as i’s m-types. The 1-types have first-order beliefs associated with the anchor µ. The

2-types assign probability 1 to the 1-types having the first-order beliefs associated with µ. More generally,

the (k + 1)-types assign probability 1 to the m-types.

Example 4.1. To better understand what goes into a level-k type structure, return to the example of

Section 1 (page 7). That type structure is not a level-k type structure for any anchor µ = (µ1, µ2). Suppose,

contra hypothesis, that this type structure is a level-k type structure for some anchor µ. Then, for each

i, there exists some m so that ui is an m-type. This implies that there must be some player i for which

ui ∈ T 1
i and, so, µi(bj) = 1. As a consequence, ui is the unique 1-type for i. If T 1

1 = {u1} and T 1
2 = {u2}

then, for each i and each m, Tm
i = {ui}. That is, types ti, vi, wi are not m-types for any m. So, without

loss of generality, suppose T 1
1 = {u1} and u2 ̸∈ T 1

2 . Since T
1
1 = {u1} it follows that

T 2m+1
1 = {u1} and T

2(m+1)
2 = {u2}

for each m ≥ 0.

Observe, since t2, v2, and w2 have distinct first-order beliefs, T 1
2 must be a singleton. Since each t̃1 ∈ T 2

1

must assign probability one to T 1
2 , T

2
1 must also be a singleton. Now, by induction, for each i and each m,

Tm
i must be a singleton. But then, for each i and each m, wi is not an m-type.

Thus, there can be no anchor µ so that the example is classified as a level-k type structure for µ.

Indeed, an analogous argument shows that there is no µ so that the type structure only induces hierarchies

of beliefs consistent with µ.

This argument reflects the fact that, in the example, the type structure induces hierarchies of beliefs

that are inconsistent with a single anchor. By contrast, level-k type structures only induce hierarchies of

beliefs consistent with an anchor.

Proposition 4.1. Let T be a level-k type structure for µ. Then each hierarchy of beliefs induced by T is

consistent with µ.
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Appendix B.2 proves Proposition 4.1. The proof follows from a stronger claim: If a type is classified as

an m-type (according to any appropriately chosen cover), then the type must induce the mth-order partial

beliefs pmi,µ. This provides an interpretation of the m-types.

Because there are (always) hierarchies of beliefs that are inconsistent with the anchor, Proposition 4.1

implies that no level-k type structure induces all hierarchies of beliefs. It is also the case that a level-k

type structure cannot induce all beliefs about types.4

Proposition 4.2. If T = (S−i, Ti, βi : i ∈ I) is a level-k type structure for µ, then T is not type-complete.

To understand why the result holds, suppose that a level-k type structure were, in fact, type-complete. The

key is that we can inductively find types tmi so that tmi is an m-type but not an ℓ-type for any ℓ ̸= m. Now

consider a belief νj ∈ ∆(S−j × T−j) which (i) has marg S−j
νj ̸= µj , and (ii) assigns positive probability

to both t1i and t2i . On the one hand, type-completness requires that there is a type of player j that holds

that belief. On the other hand, that type cannot be classified as an m-type for any m: Because first-order

beliefs differ from the anchor, it cannot be classified as a 1-type. Because it assigns positive probability to

both t1i and t2i but there is no ℓ with {t1i , t2i } ⊆ T ℓ
i , it cannot be classified as a m-type for any m ≥ 2. This

results in a contradiction.

4.2 Hierarchies Induced by Level-k Type Structures

While a level-k type structure must induce hierarchies of beliefs consistent with the anchor µ, two different

level-k type structures (for µ) may induce different hierarchies of beliefs. The next two examples illustrate

this fact.

Example 4.2. Consider a two-player game where each Si = {2i,3i}. Suppose the anchor µ = (µ1, µ2)

is such that, for each i, µi(2−i) = 2
3 . Consider a type structure T with the following properties: Set

T1 = T2 = N+. Take each βi(1) so that βi(1)(2−i, 2) =
2
3 and βi(1)(3−i, 3) =

1
3 . For m ≥ 2, take

βi(m)(2−i,m− 1) = 1 if m is even,

and

βi(m)(3−i,m− 1) = 1 if m is odd.

For each i, {Tm
i = {m} : m ≥ 1} is a Borel cover of Ti. Thus, T is a level-k type structure.

Example 4.3. Consider a two-player game where each Si = {2i,3i}. Suppose the anchor µ = (µ1, µ2)

is such that, for each i, µi(2−i) = 2
3 . Consider a type structure T with the following properties: Set

T1 = T2 = N+. Likewise, take each βi(1) so that βi(1)(2−i, 2) =
2
3 and βi(1)(3−i, 3) =

1
3 . For m ≥ 2, take

βi(m)(2−i,m− 1) = βi(m)(3−i,m− 1)) =
1

2
.

For each i, {Tm
i = {m} : m ≥ 1} is a Borel cover for T . Thus, T is a level-k type structure.

4Friedenberg (2010) shows that a type-complete structure induces all hierarchies of beliefs, if the type sets are compact
and the belief maps are continuous. So, there can be no level-k type structure that is type-complete, has compact type sets
and continuous belief maps. This result does not impose the results of compactness and continuity, which (as argued in
(Friedenberg, 2010)) are really substantive assumptions.
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Examples 4.2-4.3 provide two different level-k type structures for a given anchor µ. In both type

structures, the 1-types have first-order (partial) beliefs associated with the anchor, i.e., they assign 2
3 : 1

3 to

2−i : 3−i. Likewise, in both type structures, the 2-type have second-order partial beliefs associated with

the anchor, i.e., the type ti = 2 assigns probability 1 to t−i = 1 and so probability 1 to the event that “the

other player assigns 2
3 : 1

3 to 2−i : 3−i.” And so on. In this sense, the types induce hierarchies of partial

beliefs consistent with the anchor, illustrating Proposition 4.1.

However, in these two examples, the type structures induce disjoint sets of hierarchies of beliefs. To

see this, observe that the first-order beliefs of m-types differs in these type structures, when m ≥ 2. In

Example 4.2, each such m-type has a degenerate belief, assigning probability 1 to either of 2−i or 3−i; in

Example 4.3, each such m-type has a non-degenerate belief, assigning 1
2 : 1

2 to s−i : r−i. Thus, for each

type m ≥ 2 in Example 4.2, there is no type n ≥ 1 in Example 4.3 that induces the same first-order beliefs,

a fortiori the same hierarchies of beliefs. And conversely, with Example 4.3 and Example 4.2 reversed.

Moreover, the 1-types induce distinct second-order beliefs. In Example 4.2, type 1 assigns probability 2
3 to

“the other player chooses 2−i and assigns probability 1 to me choosing 2i;” however, in 4.3, type 1 assigns

zero probability to that same event.

4.3 Complete Level-k Type Structures

Proposition 4.2 says that a level-k type structure imposes the substantive assumption that the hierarchies

are induced by the anchor. But, Section 4.2 illustrated that there may be multiple level-k type structures,

associated with the same anchor, but which induce different hierarchies of beliefs. To understand why this

arises, note that, in Examples 4.2-4.3 there is exactly one 2-type. Yet, there are many second-order beliefs

that a player can hold, even if the player has a second-order partial belief consistent with the anchor. Both

type structures rule out such second-order beliefs and, in doing so, they impose auxiliary assumptions

on players’ hierarchies of beliefs. These auxiliary assumptions on beliefs go above and the substantive

assumptions imposed by the anchor. We will be interested in type structures that don’t impose these

exogenous restrictions on beliefs (or, at least, minimize such exogenous restrictions).

Definition 4.2. Call T = (S−i, Ti, βi : i ∈ I) a complete level-k type structure (for µ = (µi : i ∈ I))

if, for each i, there exists a Borel cover Ci = {Tm
i : m = 1, 2, . . .} of Ti so that the following hold:

(i) If ti ∈ T 1
i , then marg S−i

βi(ti) = µi,

(ii) For each m ≥ 1, if ti ∈ Tm+1
i , then βi(ti)(S−i × Tm

−i) = 1, and

(iii) For each m ≥ 1 and each νi ∈ ∆(S−i × T−i) with νi(S−i × Tm
−i) = 1, there is a type ti ∈ Tm+1

i .

Call T a complete level-k type structure if there is some µ so that T is a complete level-k type

structure for µ.

So, T is a complete level-k type structure for µ if it is a level-k type structure that satisfies the following

additional requirement: For each belief that assigns probability 1 to the m-types, there is an (m+ 1)-type

of the player that holds that belief.

We can always find a complete level-k type structure.

Proposition 4.3. Fix an µ = (µi : i ∈ I). There exists a complete level-k type structure for µ, viz. T ∗,

that satisfies the following property: If T is a countable level-k type structure for µ, then T ∗ induces the

hierarchies of beliefs induced by T .
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The proof of Proposition 4.3 constructs a particular level-k type structure T ∗ = (S−i, T
∗
i , β

∗
i : i ∈ I). The

construction has a rich set of 1-types, i.e., for each νi ∈ ∆(S−i × T ∗
−i) with marg S−i

νi = µi, there is a

1-type in T ∗
i that holds that belief.5 Thus, there are no restrictions on the beliefs of 1-types aside from the

requirement that their first-order beliefs coincide with the anchor. With this, condition (iii) implies that

the construction has a rich set of 2-types. And so on.

That said, there are hierarchies of beliefs consistent with the anchor that cannot be induced by any

level-k type structure, a fortiori any complete level-k type structure. See Example 8.1. (See, also, Section

8-A on strengthening Proposition 4.3.) Section 8-B discusses why this is immaterial from the perspective

of the inference problem.

5 The Inference Problem

We will be interested in the case where the analyst observes the strategy played and wants to infer the max-

imum level of reasoning about rationality consistent with observed behavior.6 Reasoning about rationality

will be captured by the epistemic conditions of rationality and mth-order belief of rationality.

5.1 Rationality and mth-order Belief of Rationality

An epistemic game (G, T ) induces a set of states S×T . So, a state describes a strategy-type pair for each

player. Rationality and mth-order belief of rationality is a property that a state may or may not possess.

Definition 5.1. Say (si, ti) is rational if si ∈ BRi[marg S−i
βi(ti)].

So a strategy-type pair (si, ti) is rational if si is a best response under the first-order belief associated with

ti, viz. marg S−i
βi(ti).

Definition 5.2. Say ti ∈ Ti believes E−i ⊆ S−i × T−i if E−i is Borel and βi(ti)(E−i) = 1.

So a type ti believes an event if it assigns probability 1 to the event (i.e., to the Borel set E−i). Given

some E−i ⊆ S−i × T−i, write

Bi(E−i) = {ti ∈ Ti : βi(ti)(E−i) = 1}

for the set of types that believe E−i. Note, if E−i = ∅, then Bi(E−i) = ∅.
Write R1

i for the set of rational strategy-type pairs. Inductively define Rm
i by

Rm+1
i = Rm

i ∩ (Si × B i(R
m
−i)).

Set R∞
i =

⋂
m≥1R

m
i .

Definition 5.3. The set of states at which there is rationality and mth-order belief of rationality

(RmBR) is Rm+1 =
∏

i∈I R
m
i . The set of states at which there is rationality and common belief of

rationality (RCBR) is R∞ =
∏

i∈I R
∞
i .

5There are alternate constructions of complete level-k type structures, which do not satisfy this richness property.
6Of course, at times, authors augment the dataset with other observed variables of interest. Our concern is what the

analyst can learn from the observed play, which is the focus of many studies.
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5.2 The Unrestricted Inference Problem

The unrestricted inference problem is not the focus of our interest. Nonetheless, it will serve as a useful

benchmark to think about the restricted inference problem.

In the unrestricted inference problem, the analyst observes the strategy played. But the analyst does

not observe the set of hierarchies of beliefs players consider possible, i.e., the relevant type structure T . Nor

is the analyst prepared to make a substantive assumption about those beliefs. So, the relevant inference

question is: If the analyst observes si, what is the maximum m so that si is consistent with RmBR in some

type structure. More informally, what is the maximum level of reasoning about rationality consistent with

observed behavior?

The answer to this question will depend on whether (or not) the observed strategy is m-rationalizable:

Set S0
i = Si and assume the sets Sm

i have been defined. A strategy si is in S
m+1
i if and only if there exists

some νi ∈ ∆(S−i) with: (i) si ∈ BRi[νi], and (ii) νi(S
m
−i) = 1. The set Sm

i is the set of m-rationalizable

strategies for player i. The set S∞
i =

⋂
m≥1 S

m
i is the set of rationalizable strategies for player i.

Proposition 5.1 (Known Result). Fix an epistemic game (G, T ).

(i) For each m ≥ 1, proj SR
m ⊆ Sm.

(ii) If T is type-complete, for each m ≥ 1, proj SR
m = Sm.

(iii) If T is type-complete with compact type sets and continuous belief maps, proj SR
∞ = S∞.

See Brandenburger and Dekel (1987), Tan and Werlang (1988), Battigalli and Siniscalchi (2002), and

Friedenberg and Keisler (2021) for versions of this known result.

To understand how the result speaks to the unrestricted inference problem, consider two cases. First,

suppose the analyst observes si ∈ Sm
i \Sm+1

i , i.e., the analyst observes the player choose a strategy that is

m- but not (m + 1)-rationalizable. Then the analyst concludes the behavior is consistent with, at most,

R(m− 1)BR, i.e., m rounds of reasoning about rationality. In particular, si is consistent with R(m− 1)BR

in a type-complete type structure (part (ii)), but is inconsistent with RmBR in any other structure (part

(i)).

Second, suppose the analyst observes si ∈ S∞
i . Then, there is a type-complete structure so that, for

each m, the is a type ti is consistent with RCBR (part (iii)). In this sense, si is consistent with unbounded

reasoning about rationality.

5.3 The Restricted Inference Problem

In the restricted inference problem, the analyst is prepared to make the substantive assumption that

hierarchies of beliefs are generated by some anchor µ. Thus, the relavent inference question is: If the

analyst observes si, what is the maximum m so that si is consistent with RmBR in some level-k type

structure for µ. One might think that the answer is tied to the level-k solution concept (for µ). However,

as the next result indicates, it is not:

Theorem 5.1. Fix an epistemic game (G, T ), where T is a level-k type structure for µ.

(i) For each m ≥ 1, proj SR
m ⊆ Sm.

(ii) If T is a complete level-k type structure for µ, for each m ≥ 1, proj SR
m = Sm.
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So, despite the fact that the analyst makes the substantive assumption that the hierarchies of beliefs are

generated by a particular anchor µ, the nature of the inference problem is similar to the unrestricted

inference problem: If the analyst observes a strategy that is m- but not (m + 1)-rationalizable, then the

analyst concludes the behavior is consistent with, at most, R(m − 1)BR in any level-k type structure for

µ. In particular, si is consistent with R(m − 1)BR in a complete level-k type structure for µ (part (ii))

but is inconsistent with RmBR is any level-k type structure for µ (part (i)).

Note, if the analyst observes si ∈ S∞
i , then the conclusion is more subtle. Part (ii) says that the

analyst cannot put a bound on reasoning about rationality, in the following sense: In a complete level-k

type structure for µ, the strategy si is consistent with RmBR for each m. That is, in a complete level-k

type structure, there are types t1i , t
2
i , . . . so that, for each m, (si, t

m
i ) ∈ Rm

i . (Note, in general, tmi will not

be an m-type.) However, this stops short of saying that si is consistent with RCBR. In fact, it may not be

consistent with RCBR, as the following example indicates.

5.4 Proof of Theorem 5.1

We now turn to prove Theorem 5.1. Part (i) is an implication of Proposition 5.1’s part (i). For part (ii) it

suffices to show the reverse inclusion. In particular, we show the following: If si ∈ Sm
i , then there exists a

(m+ 1)-type tm+1
i ∈ Tm+1

i so that (si, t
m+1
i ) ∈ Rm

i . The proof is by induction on m.

First, fix si ∈ S1
i . Then there exists some νi ∈ ∆(S−i) such that si is a best response under νi. There

exists t2i ∈ T 2
i such that marg S−i

βi(t
2
i ) = νi. As such, (si, t

2
i ) ∈ R1

i .

Next, assume the result holds for m. Fix si ∈ Sm+1
i . Then there exists some νi ∈ ∆(S−i) such that si

is a best response under νi and νi(S
m
−i) = 1. By the induction hypothesis, there is a mapping fm−i : S

m
−i →

Tm+1
−i such that (s−i, f

m
−i(s−i)) ∈ Rm

−i. Construct ν̂i ∈ ∆(S−i × T−i) so that ν̂i(s−i, f
m
−i(s−i)) = νi(s−i).

In a complete level-k type structure, there exists some tm+2
i ∈ Tm+2

i such that βi(t
m+2
i ) = ν̂i. Since

marg S−i
βi(t

m+2
i ) = νi, (si, t

m+2
i ) ∈ R1

i . Moreover, for each n ≤ m, Rn
−i is Borel (Lemma C.3) and

Suppβi(t
m+2
i ) ⊆ Rm

−i ⊆ Rn
−i. So, t

m+1
i believes Rn

−i for each n ≤ m. As such, (si, t
m+2
i ) ∈ Rm+1

i .

6 The Level-k Inference Problem

Theorem 5.1 raises the question: If we identify a subject as level-m but not level-n for n > m, what can

we infer about the nature of the subject’s reasoning. To address the question, we begin by providing an

epistemic characterization of the level-k solution concept. We then discuss what the characterization means

from the perspective of inferring reasoning about rationality.

6.1 The Level-k Solution Concept

Often, papers define the Level-k concept relative to a specific game. Because we want to define the concept

for all (simultaneous-move) games, we introduce an abstract definition. We then discuss choices made in

adopting the definition.

Definition 6.1. Set L1
i = BRi[µi]. Assume the sets Lm

i have been defined. Let Lm+1
i be the set of

strategies si so that there exists some νi ∈ ∆(S−i) satisfying

(i) si ∈ BRi[νi], and
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(ii) νi(L
m
−i) = 1.

Say a strategy is level-m (for µ) if si ∈ Lm
i . Call the set Lm

i as i’s level-m behavior (for µ) and call the

set Lm =
∏

i∈I L
m
i the level-m behavior (for µ). The level-k solution concept (for µ) is the profile

(L1, L2, . . .).

The level-k solution concept exogenously fixes a profile of first-order beliefs µ = (µi : i ∈ I), where µi

reflects i’s beliefs about the strategies others play. It then iterates best responses relative to those beliefs.

Level-1 behavior is the set of strategy profiles (si : i ∈ I) where each si is a best response under i’s anchor.

Level-2 behavior is the set of strategy profiles (si : i ∈ I) where each si is a best response under a belief

that assigns probability one to the level-1 behavior of other players. Etc.

Remark 6.1. Our definition allows for the fact that the sets Lm
i may not be a singleton. In fact, there

are prominent examples where the level-k solution concept has been applied, despite the fact that there

are multiple best responses. For instance, consider a 3-player beauty contest game (Nagel, 1995), where

players simultaneously choose a number in {1, 2, 3, 4, 5}. A player wins if their choice is closest to 2
3 of the

average; they loose if some other bid is closer to 2
3 of the average. Ties split the win equally. If the anchor

assigns probability 1 to the arithmatic mean 3, then bidding either of 1 or 2 is a best response.

When there are multiple best responses, some papers assume players have a uniform belief over those

best responses. So, in the beauty contest example of the previous paragraph, a level-2 strategy must be a

best response under a belief that assigns 1
2 : 1

2 to 1 : 2. This imposes a secondary exogenous restriction on

beliefs—but one that depends on iterative best responses. We discuss this further in Section 8-D.

6.2 Epistemic Foundations for Level-k

Theorem 6.1. Fix an epistemic game (G, T ), where T is a level-k type structure for µ. For each player

i, fix covers Ci = {Tm
i : m = 1, 2, . . .} satisfying conditions (i)-(ii) of Definition 4.1 (resp. (i)-(ii)-(iii) of

Definition 4.2, if T is a complete level-k type structure).

(i) For each m ≥ 1, proj Si
(Rm

i ∩ (Si × Tm
i )) ⊆ Lm

i .

(ii) For each m ≥ 1, if T is a complete level-k type structure for µ, proj Si
(Rm

i ∩ (Si × Tm
i )) = Lm

i .

Much like Theorem 5.1, Theorem 6.1 fixes a level-k type structure for µ. Refer to Figure TBA. Whereas

Theorem 5.1 focused on the behavioral implications of R(m−1)BR, Theorem 6.1 focuses on the behavioral

implications of R(m−1)BR for only the m-types. Part (i) says that, if the m-types engage in R(m−1)BR,

their behavior is level-m (for µ). Part (ii) adds that, in any complete level-k type structure, any level-m

strategy for µ is consistent with R(m− 1)BR for an m-type.

To better understand the Theorem, fix a level-k type structure for µ (not necessarily a complete level-k

type structure). A strategy is level-1 strategy for µ if and only if there is a 1-type ti so that (si, ti) is

rational. (See Proposition C.1 part (i).) Note, this conclusion is stronger than that in part (i) and must

only hold for m = 1. In particular, a strategy si may be level-2 for µ even if there is no 2-type ti so that

(si, ti) is consistent with R1BR. The next example illustrates this claim.

Example 6.1. Refer to the game in Figure 6.1. Consider an anchor µ = (µ1, µ2) with each µi(D−i) = 1.

Observe that

Lm
i = {Ui,Mi} = Sm

i
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for each m ≥ 1. We next show that there is a level-k type structure for µ so that (i) each m-rationalizable

strategy is consistent with RmBR, but (ii) there is a level-k strategy for µ so that some si ∈ L2
i is

inconsistent with R1BR for every 2-type.

U−i M−i D−i

Ui 1 0 1

Mi 0 1 1

Di -1 -1 -1

Figure 6.1

Next define a level-k type structure for µ. Set each Ti = {ti, vi} × N. The belief maps are de-

fined as follows: First, βi(ti, 1)(D−i, (t−i, 2)) = βi(vi, 1)(D−i, (v−i, 2)) = 1 and βi(ti, 2)(U−i, (t−i, 1)) =

βi(vi, 2)(U−i, (v−i, 1)) = 1. Second, βi(ti, 3)(U−i, (t−i, 2)) = 1 but βi(vi, 3)(D−i, (v−i, 2)) = 1. Third, for

each n ≥ 4, βi(ti, n)(U−i, (t−i, n − 1)) = βi(vi, n)(M−i, (v−i, n − 1)) = 1. Note, this is a level-k type

structure for µ associated with covers Ci = {{ti, vi} × {m} : m ≥ 1}.
For each m, proj Si

Rm
i = {Ui,Mi}. However, proj Si

(R2
i ∩ T 2

i ) = {Ui} ⊊ Lm
i .

Example 6.1 features a “rich” level-k type structure, in the sense that there are enough beliefs so that all

the m-rationalizable strategies are consistent with R(m− 1)BR. Thus, for this specific type structure, part

(i) of Theorem 5.1 can be strengthened from inclusion to equality. Despite the type structure being rich

in this sense, it does not have a rich set of 2-types. As a consequence, there are level-2 strategies that

are inconsistent with R1BR for each 2-type. Part (ii) of Theorem 6.1 says implies that, when there is a

“rich” set of 2-types (in the sense of the requirement associated with a complete level-k type structure),

any level-2 strategies is consistent with R1BR for some 2-type.

While a complete level-k type structure features a sufficiently “rich” set of 2-types, 3-types, etc., it is

important to note that it does not induce a rich set of beliefs: In particular, we saw that a complete level-k

type structure cannot induce all hierarchies of beliefs. Moreover, a complete level-k type structure cannot

be type-complete. See Propositions 4.1-4.2.

6.3 Identifying Levels of Reasoning about Rationality

Suppose the analyst observes a player choose some strategy s∗i so that (i) s∗i is level-m (m ≥ 1) for µ, but

(ii) s∗i is not level-n (for µ) for any n > m. What can the analyst infer about how the player reasons about

rationality? We first address the question in the context of the unrestricted inference problem, then in the

context of the restricted inference problem, and finally in the context of Theorem 6.1. To do so, we use

the following fact: If s∗i is level-m then s∗i is m-rationalizable. (See Lemma C.4.)

In the unrestricted inference problem, the analyst only observes the strategy s∗i and the analyst is not

prepared to make an assumption about the hierarchies of beliefs that players consider possible. Since s∗i
is level-m, the analyst concludes that s∗i is consistent with R(m − 1)BR in some type structure. Because

an (m+1)-rationalizable strategy need not be level-(m+1), the strategy s∗i might well be consistent with

RmBR in some type structure, even though it is not level-(m + 1) for µ. The analyst can only conclude

that s∗i is inconsistent with RmBR if the strategy is not (m + 1)-rationalizable. This is an implication of

Proposition 5.1.

In the restricted inference problem, the analyst is willing to make a substantive assumption about the

players’ beliefs:
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Identifying Assumption 1. There is some anchor µ and some n ≥ 1 so that the player who chose s∗i
has the beliefs associated with an n-type in a level-k type structure for µ.

Theorem 5.1 implies that, despite this identification assumption, the nature of the inference does not

change: The analyst can conclude that s∗i is consistent with R(m − 1)BR, but cannot rule out that it is

also consistent with RmBR, unless s∗i is also fails (m+ 1)-rationalizability.

Theorem 6.1 suggests a stronger conclusion, based on an additional auxiliary assumption above As-

sumption 1:

Identifying Assumption 2. If a player is an n-type in some level-k type structure for µ, then the player

reasons according to R(n− 1)BR.

Under Assumptions 1-2, the analyst can conclude that s∗i is consistent with R(m− 1)BR and inconsistent

with RnBR for any n ≥ m: Since, for each n ≥ m + 1, s∗i is not level-n (for µ), there is no level-k type

structure (for µ) and n-type thereof ti, so that (s∗i , ti) is consistent with R(n− 1)BR. (This uses Theorem

6.1.) Then, the identifying assumptions rule out that the behavior s∗i was generated by a player that

reasons according to RmBR, a fortiori RnBR for any n > m.

It is worth emphasizing the nature of this approach to identification, especially relative to standard

critiques in the literature. It is understood that the level-k approach implicitly assumes that behavior is

generated by subjects who have (partial) beliefs (of some order) induced by an anchor. This assumption fits

with Assumption 1 and has itself received criticism. (Refer back to page 4.) The analysis here highlights the

importance of Assumption 2, above and beyond Assumption 1. A generous interpretation of Assumption

2 is: If subjects hold certain partial nth-order beliefs, then there reason according to R(n − 1)BR.7 Even

under this interpretation, it requires an assumption that particular nth-order beliefs determine how a player

reasons about rationality—an assumption that would be hard to verify (or falsify) in practice.

Remark 6.2. [TODO: Add discussion about the difference in the conclusion on reasoning about rationality

vs reasoning ]

7 Applications

[TODO: Insert applications]

8 Discussion

A. Complete Level-k Type Structures and Hierarchies Consistent with the Anchor One

might conjecture that a complete level-k type structure for µ induces all hierarchies of beliefs consistent

with the anchor. However, this is not the case. We begin with an example.

Example 8.1. Consider a two-player game where each Si = {2i,3i}. For each player i, there is a

hierarchy of beliefs hi,2 = (h1i,2, h
2
i,2, . . .) where it is commonly believed that the other player chooses 2−i:

So, h1i,2(2−i) = 1 and hm+1
i,2 (2−i, . . . , h

m
−i,2) = 1. Also, for each player i, there is a hierarchy of beliefs

hi = (h1i , h
2
i , . . .) with h1i (2−i) = 2

3 , h
m+1
i (2−i, . . . , h

m
−i,2) = 2

3 , and hm+1
i (3−i, . . . , h

m
−i,2) = 1

3 . (So, h2i

7This is indeed generous. In particular, n-types are associated with certain partial nth-order beliefs, but the partial
nth-order beliefs do not uniquely determine whether a type is an n-type.
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assigns probability 2
3 s to “the other player plays 2−i and believes I play 2i” and probability 1

3 s to “the

other player plays 3−i and believes I play 2i.”)

Now consider an anchor µ = (µ1, µ2) where, for each i, µi(2−i) =
2
3 . Note, that hi is a hierarchy of

beliefs consistent with the anchor, since h1i = p1i,µ. However, there is no level-k type structure (including

a complete level-k type structure) that induces the hierarchy hi = (h1i , h
2
i , . . .). We give the intuition why

here and complete the proof in Appendix D.

Fix a level-k type structure for µ = (µi : i ∈ I) and, for each i ∈ I, let Ci = {Tm
i : m = 1, 2, . . .}

be a Borel cover so that (Ci : i ∈ I) jointly satisfy conditions (i)-(ii) of Definition 4.1. Suppose, contra

hypothesis, there exists some type ti ∈ Ti with δi(ti) = hi. Then, there must exist some type t−i,2 ∈ T−i

with δ−i(t−i,2) = h−i,2. (See Lemma D.1.) But, there is no such type t−i,2 ∈ T−i. (See Lemma D.2.)

Intuitively: The 1-types have first-order beliefs distinct from h1i,2. Since the 2-types must assign probability

one to 1-types, this implies that the 2-types have second-order beliefs distinct from h1i,2. And so on.

The example points to a more general phenomena. A level-k type structure (a fortiori, a complete

level-k type structures) cannot induce hierarchies of beliefs where the first-order beliefs coincide with

the anchor and higher-order beliefs assigns positive probability to beliefs that are inconsistent with the

anchor. As a consequence, it also cannot induce hierarchies of beliefs that assign positive probability to

such hierarchies. Etc. Put differently, level-k type structures (a fortiori, complete level-k type structures)

impose the substantive requirement: Not only are players beliefs consistent with the anchor, they believe

other players’ beliefs are consistent with the anchor, etc.8 As a consequence:

Proposition 8.1. Fix a non-degenerate anchor µ, i.e., an anchor where no player assigns probability 1

to a strategy profile. If T is a level-k type structure for µ, then T does not induce all hierarchies of beliefs

consistent with µ.

One might instead hope for the following: If a hierarchy can be induced by a level-k type structure for

µ, then any complete level-k type structure must also induce that hierarchy. However, a close inspection

of Definition 4.2 indicates why this need not be the case. While a complete level-k type structure requires

a rich set of 2-types, 3-types, etc., it does not require a rich set of 1-types.

The proof of Proposition 4.3 constructs a particular complete level-k type structure T ∗ = (T ∗
i , β

∗
i : i ∈ I)

that does have a rich set of 1-types: For every belief νi ∈ ∆(S−i × T ∗
−i) with marg S−i

νi = µi, there is a

1-type in T ∗
i with β∗

i (t
∗
i ) = νi. For this reason, any hierarchy of beliefs that can be induced by a countable

level-k type structure can be induced by the constructed complete level-k type structure. Appendix B.4

discusses the technical difficulty in extending the result to any level-k type structure.

B. Complete Level-k Type Structures and Inference We saw that a complete level-k type struc-

ture need not induce all hierarchies of beliefs consistent with the anchor. Despite this, from the perspective

of inferring the level of reasoning about rationality, it suffices to focus on level-k and complete level-k

type structures. To understand why, recall that in any type structure, the set of strategies consistent

with R(m − 1)BR must be contained in the m-rationalizable strategies. (Refer to Proposition 5.1(i).)

The same holds if we replace “any type structure” with “any hierarchy structure” (i.e., any belief-closed

subset—or even any subset—of hierarchies of beliefs). Since any m-rationalizable strategy is consistent

8Of course, one might want to implose this substantive requirement. The literature is, arguably, silent on whether this is
desired.
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with R(m − 1)BR strategy in a complete level-k type structure (Theorem 5.1(ii)), the focus on complete

level-k type structures is without loss of inference.

C. Definition of Level-k Type Structures A level-k type structure (Definition 4.1) requires that,

for each player i, we find a cover that satisfies two properties. It does not require that the associated covers

be unique. Indeed, they may not be; see Example D.2. It also does not require that the cover is a partition.

Indeed, they may not be; see Example D.1.

A complete level-k type structure (Definition 4.2) is associated with covers that satisfy three criteria.

While these covers need not be a partition, the construction of a complete level-k type structure in Propo-

sition 4.3 does involve partitional covers. We do not know if adding a partitional requirement imposes

substantive assumptions.

D. Definition of the Level-k Solution Concept Definition 6.1 allows for the fact that there may

be multiple best responses to a given distribution on strategies. This is not simply a theoretical possibility

but a feature of important level-k analyses. As pointed out in Remark 6.1, some papers instead assume

that players have a uniform belief about best responses. This imposes a secondary exogenous restriction

on beliefs—but one that depends on iterative best responses. This additional restriction only serves to

reinforce the message of the paper: It might suggest lower levels of reasoning about rationality than is

consistent with the data, since it may suggest that the level-k bound is lower than that suggested by

Definition 6.1.

Theorem 6.1 can be seen as providing foundations for this level-k solution concept, as specified by

Definition 6.1. From the perspective of foundations, it is important that we focus on this generalized

level-k solution concept. The epistemic approach takes, as given, the set of hierarchies of beliefs players

consider possible (i.e., a type structure); it then goes on to impose epistemic conditions relative to those

hierarchies (i.e., RmBR is applied relative to a type structure). The restriction to a uniform belief over

best responses proceeds in a different direction: It derives first-order beliefs based on best responses (to

other beliefs).

E. Foundations for Level-k Theorem 6.1 provides epistemic foundations for the level-k solution con-

cept. These foundations are quite different from foundations for other solution concepts: The foundations

rest on associating different hierarchies of partial beliefs with different epistemic conditions. In doing so, it

allows the researcher to make different epistemic assumptions (i.e., R1BR, R2BR, etc. . .) based on different

hierarchies of partial beliefs. By contrast, the typical approach (in epistemic game theory) will simply say

whether a hierarchy of beliefs is or is not consistent with a particular epistemic assumption.

The foundations are cast in a typical epistemic framework, where types are associated with hierarchies

of beliefs. This approach describes players as actors that do not face limitations on their ability to engage

in interactive reasoning—i.e., their ability to specify all sentences of the form “I think that you think that

I think . . ..” However, often, the level-k solution concept is motivated by a stipulation that players have a

limited ability to engage in such sentences. On the one hand, Theorem 6.1 indicates that this stipulation is

not needed—that the level-k solution concept does not require limits on the ability to engage in interactive

reasoning. On the other hand, one might wonder if the foundations hinge on unlimited ability to engage in

interactive reasoning. They do not: We can recast the analysis here in terms of an epistemic model where
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epistemic types only induce finite-order beliefs (as in Heifetz and Kets, 2018 or Kets, 2010). The key is

that the epistemic conditions of RmBR depend only on the (m+ 1)th-order beliefs. See Appendix D.

F. RmBR Behavior of k-Types: Dominated Anchors [NOTE: We had the lemma below. Do we

find it useful? Should we keep it?]

Lemma 8.1. Fix an epistemic game (G, T ), where T that is a level-k type structure for µ. If, for each i,

µi(S−i\S1
−i) > 0, then ⋃

k≥m

proj Si
(Rm

i ∩ (Si × Tm
i )) = proj Si

Rm
i .

In the specific case where the anchor assigns positive probability to a dominated strategy, the R(m−1)BR

behavior coincides with the R(m − 1) behavior of k ≥ m types. This arises because, for such an anchor,

there are no k ≤ m− 1 types consistent with R(m− 1)BR. (See Lemma D.3.) In particular, 1-types assign

positive probability to irrational strategy-type pairs; as such, they are inconsistent with R1BR. With this,

2-types assign probability 1 to strategy-type pairs inconsistent with R1BR; as such, they are inconsistent

with R2BR. And so on.

Appendix A Mathematical Preliminaries

It will be useful to begin with some mathematical preliminary.

Lemma A.1. Let Ω1,Ω2 be metrizable spaces. Then the mapping marg Ω1
: ∆(Ω1 × Ω2) → ∆(Ω1) is

continuous.

Proof. Let proj : Ω1 × Ω2 → Ω1 be the projection mapping, i.e., mapping proj (ω1, ω2) = ω1. Note

that proj is continuous: If U1 ⊆ Ω1 is open, then (proj )−1(U1) = U1 × Ω2 is open. Thus, proj :

∆(Ω1 × Ω2) → ∆(Ω1) is continuous. (See Theorem 15.14 in Aliprantis and Border (2007).) Finally,

observe that proj (ν) = marg Ω1
ν. (For each event E1 ⊆ Ω1, marg Ω1

ν(E1) = ν(E1 × Ω2) = proj (ν)(E1).)

Appendix B Proofs for Sections 3-4

B.1 Type Structures Induce Hierarchies of Beliefs

Fix a type structure T = (S−i, Ti, βi : i ∈ I). We will inductively define measurable maps ρmi : S−i×T−i →
Xm

i and δmi : Ti → Hm
i . First, set ρ1i = proj S−i

and δ1i = ρ1
i
◦ βi. Note, ρ1i is measurable and so ρ1

i
is

measurable. From this and the fact that βi is measurable, δ1i is measurable.

Now, assume the measurable maps ρmi : S−i × T−i → Xm
i and δmi : Ti → Hm

i have been defined. Set

ρm+1
i (s−i, t−i) = (ρmi (s−i, t−i), δ

m
−i(t−i)).

Note, since ρmi and δm−i are measurable, so is ρm+1
i . Then set δm+1

i = ρm+1
i

◦ βi. Since ρm+1
i is measurable

and so ρm+1
i

is measurable. From this and the fact that βi is measurable, δm+1
i is measurable.

The following standard Lemmata will be of use.

Lemma B.1. For each ti ∈ Ti, δ
1
i (ti) = marg S−i

βi(ti).
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Proof. Fix some s−i ∈ S−i. Note,

δ1i (ti)(s−i) = βi(ti)((ρ
1
i )

−1({s−i})) = βi(ti)(S−i × T−i),

as desired.

Lemma B.2. If δmi (ti) = hmi then, for each n ≤ m, δni (ti) = margXn
−i
hni ,

Proof. Insert proof.

Lemma B.3. For each m ≥ 1, ρm+1
i (s−i, t−i) = (s−i, δ

1
−i(t−i), . . . , δ

m
−i(t−i)).

Proof. For m = 1, this is immediate. Assume the statement is true for m ≥ 2, so that ρm+1
i (s−i, t−i) =

(s−i, δ
1
−i(t−i), . . . , δ

m
−i(t−i)). Then, ρ

m+2
i (s−i, t−i) = (s−i, δ

1
−i(t−i), . . . , δ

m
−i(t−i), δ

m+1
−i (t−i)), as desired.

B.2 Proof of Proposition 4.1

Fix a level-k type structure for µ = (µi : i ∈ I) and, for each i ∈ I, let Ci = {Tm
i : m = 1, 2, . . .} be a

Borel cover so that (Ci : i ∈ I) jointly satisfy conditions (i)-(ii) of Definition 4.1. The following Lemma will

establish Proposition 4.1.

Lemma B.4. For each m ≥ 1, ηmi (δmi (Tm
i )) ⊆ {pmi,µ}.

Proof. The case of m = 1 is immediate. Assume the claim holds for m ≥ 2. Fix some ti ∈ Tm+1
i and

write hm+1
i = δm+1

i (ti). We will show that ηm+1
i (hm+1

i ) = pm+1
i,µ .

Fix

Em+1
i = Xm

i ×
∏
j ̸=i

(ηmj )−1({pmj,µ})

and note that Em+1
i ⊆ Xm+1

i . Note that

S−i × Tm
−i ⊆ (ρm+1

i )−1(Em+1
i ).

To see this, fix (s−i, t−i) = (sj , tj : j ̸= i) ∈ S−i × Tm
−i. By the induction hypothesis, ηmj (δmj (tmj )) = pmj,µ.

Thus, ρm+1
i (s−i, t−i) ∈ Em+1

i , as stated.

Now observe that Em+1
i is measurable set, since each ηmj is measurable. Thus,

hm+1
i (Em+1

i ) = βi(ti)((ρ
m+1
i )−1(Em+1

i )) ≥ βi(ti)(S−i × Tm
−i) = 1

and so hm+1
i (Em+1

i ) = 1. We use this fact to show that ηm+1
i (hm+1

i ) = pm+1
i,µ . In particular, suppose

ηm+1
i (hm+1

i ) = p̃. Note,

p̃({pm−i,µ}) = hm+1
i ((η̂m−i)

−1({pm−i,µ})) = hm+1
i (Em+1

i ) = 1.

Thus, p̃ = pm+1
i,µ as desired. [NOTE: check that it is indeed obvious that (η̂m−i)

−1({pm−i,µ}) = Em+1
i .]

B.3 Proof of Proposition 4.2

Proof of Proposition 4.2. Fix a level-k type structure for µ, viz. T = (S−i, Ti, βi : i ∈ I). For each

i ∈ I, write Ci = {T 1
i , T

2
i , . . .} for Borel covers of Ti that jointly satisfy conditions conditions (i)-(ii) of
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Definition 4.1.

Suppose, contra hypothesis, T is type-complete. First, let νi ∈ ∆(S−i ×T−i) where (i) marg S−i
νi = µi

and (ii) for each m ≥ 1, νi(S−i × Tm
−i) > 0. Since T is type-complete, there exists a type t1i ∈ Ti with

βi(t
1
i ) = νi. Using the fact that βi(t

1
i )(S−i × Tm

−i) > 0 for each m, it follows that t1i ̸∈ Tm
i for all m ≥ 2.

Thus, t1i ∈ Tm
i if and only if m = 1.

Now, observe that there is a φi ∈ ∆(S−i×T−i) so that (i) marg S−i
φi ̸= µi, and (ii) φi(S−i×{t1−i}) = 1.

Since T is type-complete, there exists a type t2i ∈ Ti with βi(t
2
i ) = φi. Given that marg S−i

φi ̸= µi, t
2
i ̸∈ T 1

i .

Using the fact that t1i ∈ Tm
i if and only if m = 1, it follows that t2i ∈ Tm

i if and only if m = 2.

Finally, observe that there is a ξi ∈ ∆(S−i × T−i) so that (i) marg S−i
ξi ̸= µi, (ii) ξi(S−i × {t1−i}) > 0,

and (iii) ξi(S−i × {t2−i}) > 0. Since T is type-complete, there exists a type ti ∈ Ti with βi(ti) = ξi. Given

that marg S−i
ξi ̸= µi, ti ̸∈ T 1

i . Since ξi(S−i × {t1−i}) > 0 and ξi(S−i × {t2−i}) > 0 and there is no m with

t1−i, t
2
−i ∈ Tm

i , it follows that ti ̸∈ Tm
i for each m. This contradicts the type structure being a level-k type

structure for µ.

B.4 Proof of Proposition 4.3

B.4.0.1 Construction of a Complete Level-k Type Structure For each integer m ≥ 1, let

T ∗,m
i = [0, 1] × {m}. Set T ∗

i =
⋃

m≥1 T
∗,m
i . Endow T ∗,m

i with a metric d : T ∗
i × T ∗

i → R so that

d((xj ,mj), (xℓ,mℓ)) = ∥xj − xℓ∥ if mj = mℓ and d((xj ,mj), (xℓ,mℓ)) = 2 if mj ̸= mℓ.

Lemma B.5. Then (T ∗
i , d) is a Polish space.

Proof. Let Dm = (Q∩ [0, 1])∩{m} and note that each Dm forms a countable dense subset of [0, 1]×{m}.
Then set D =

⋃
m∈Z(Dm × {m}). The set D is countable. It is also dense in T ∗

i . (This follows from the

fact that each open set in T ∗
i must either be an open set in [0, 1] × {m} or a union of such open sets.)

Thus, (T ∗
i , d) is separable.

Next observe that, for any Cauchy sequence ((xj ,mj) : j = 1, 2, . . .), there must be some J so that

mj = mJ for all j ≥ J . Thus, any Cauchy sequence converges and (T ∗
i , d) is complete.

Lemma B.6.

(i) There exists an injective bimeasurable map χ1
i : T ∗,1

i → ∆(S−i × T ∗
−i) so that χ1

i (T
∗,1
i ) = {νi ∈

∆(S−i × T ∗
−i) : marg S−i

νi = µi}.

(ii) For each m ≥ 2, there exists an injective bimeasurable map χm
i : T ∗,m

i → ∆(S−i × T ∗
−i) so that

χm
i (T ∗,m

i ) = {νi ∈ ∆(S−i × T ∗
−i) : νi(S−i × T ∗,m−1

−i ) = 1}.

Proof. For part (i), begin by noting that both T ∗,1
i = [0, 1] × {1} and ∆(S−i × T ∗

−i) are uncountable

Polish spaces. (The latter follows from Lemma B.5.) Since {νi ∈ ∆(S−i × T ∗
−i) : marg S−i

νi = µi} is a

closed subset of ∆(S−i × T ∗
−i), it too is Polish. (See Aliprantis and Border, 2007, pg. 74.) Moreover,

{νi ∈ ∆(S−i × T ∗
−i) : marg S−i

νi = µi} is uncountable. So, the claim follows from the Borel Isomorphism

Theorem.

For part (ii), fixm ≥ 2. Note that both T ∗,m
i and ∆(S−i×Tm−1,∗

−i ) are uncountable Polish spaces. So, by

the Borel Isomorphism Theorem, there exists a bimeasurable bijective map χ̂m
i : T ∗,m

i → ∆(S−i×Tm−1,∗
−i ).

Also note that there exists an injective bimeasurable map ψ̂m
i : ∆(S−i × Tm−1,∗

−i ) → ∆(S−i × T ∗
−i) so that

ψ̂m
i (∆(S−i × Tm−1,∗

−i )) = {νi ∈ ∆(S−i × T ∗
−i) : νi(∆(S−i × T ∗,m−1

−i )) = 1}.
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Thus, ψ̂m
i ◦ χ̂m

i is an injective bimeasurable map that satisfies the desired property.

For each i, let β∗
i : T ∗

i → ∆(S−i × T ∗
−i) be defined so that βi(x,m) = χm

i (x,m). Note, under this

construction, β∗
i is not injective. But, if there exists (x,m) ̸= (x′,m′) but β∗

i (x,m) = β∗
i (x

′,m′), then

either (i) (x,m) ∈ [0, 1]×{1} and (x′,m′) ̸∈ [0, 1]×{1} or (ii) (x′,m′) ∈ [0, 1]×{1} and (x,m) ̸∈ [0, 1]×{1}.

Lemma B.7. The map β∗
i is bimeasurable.

Proof. Fix a Borel E ⊆ S−i × T ∗
−i. Since each χm

i is measurable, each (χm
i )−i(E) is Borel. Now observe

that

(β∗
i )

−1(E) =
⋃
m≥1

(χm
i )−i(E)

is Borel. Thus, β∗
i is measurable.

Likewise, fix a Borel E ⊆ T ∗
i . Since each χm

i is bimeasurable, each χm
i (E ∩ T ∗,m

i ) is Borel. From this

β∗
i (E) =

⋃
m≥1

χm
i (E ∩ T ∗,m

i )

is Borel. Thus, β∗
i is bimeasurable. Note, this establishes that (T ∗

i , β
∗
i : i ∈ I) is a type structure. Let

ρ∗,mi : S−i × T ∗
−i → Xm

i (resp., δ∗,mi : T ∗
i → Hm

i ) be the map from strategy-type pairs to the mth-order

space of uncertainty (resp. be the map from types to mth-order beliefs).

Lemma B.8. The type structure (T ∗
i , β

∗
i : i ∈ I) is a complete level-k type structure.

Proof. Observe that C∗
i = {T ∗,m

i : m = 1, 2, . . .} is a Borel cover that, by construction, satisfies conditions

(i)-(ii)-(iii) of a complete level-k type structure.

B.4.0.2 Induces Hierarchies of Countable Level-k Type Structures For the remainder of the

argument, fix a level-k type structure (Ti, βi : i ∈ I). Then there exists a Borel cover Ci = {Tm
i : m =

1, 2, . . .} that satisfies conditions (i)-(ii) of Definition 4.1. Let ρmi : S−i × T−i → Xm
i and δmi : Ti → Hm

i

be the maps associated with this type structure.

Lemma B.9. Suppose, for each i, Ti is countable. Then, for each m and each n, there is a map fm,n
i :

Tm
i → T ∗,m

i so that the following holds: For each ti ∈ Tm
i , δni (ti) = δ∗,ni (fm,n

i (ti)).

Before coming to the proof of Lemma B.9, let us note that the Lemma delivers an fm,n
i : Tm

i → T ∗,m
i that

is Borel measurable and preserves nth-order beliefs. This follows since Tm
i is countable. The fact that fm,n

−i

is measurable is important in showing the existence of the map fm+1,n+1
i .

Proof. The structure of the proof is as follows: We fix a type ti ∈ Tm
i and show that there exists a type

t∗i ∈ Tm
i with δ∗,ni (t∗i ) = δni (ti). The map fm,n

i : Tm
i → T ∗,m

i can then be constructed by setting fm,n
i (ti)

to be the associated t∗i . The proof is by induction on n.

n = 1 : First considerm = 1 and let f1,1i : T 1
i → T ∗,1

i be an arbitrary map. Since ti ∈ T 1
i and f1,1i (ti) ∈ T ∗,1

i

are both 1-types in their respective type structures, it follows that

marg S−i
βi(ti) = µi = marg S−i

β∗
i (f

1,1
i (ti)).
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By Lemma B.1, δ1i (ti) = marg S−i
βi(ti) and δ∗,1i (f1,1i (ti)) = marg S−i

β∗
i (f

1,1
i (ti)). From this, the claim

follows.

Next considerm ≥ 2. Fix some ti ∈ Tm
i . Note, there exists some νi ∈ ∆(S−i×T ∗

−i) so that marg S−i
νi =

marg S−i
βi(ti) and νi(S−i×T ∗,m−1

−i ) = 1. By construction, there exists some t∗i ∈ T ∗,m
i so that β∗

i (t
∗
i ) = νi.

Now notice that

δ1i (ti) = marg S−i
βi(ti) = marg S−i

νi = δ∗,1i (t∗i ).

(The first and last equality follows from Lemma B.1. The middle equality comes from the definition of νi.)

From this, the claim follows.

n ≥ 2 : Suppose the claim holds for n ≥ 1. We show that it also holds for n+ 1.

First consider m = 1. Note, by the induction hypothesis, for each player j, there exists a mapping

fnj : Tj → T ∗
j so that fnj (tj) = fm,n

j (tj) for some m with tj ∈ Tm
j . (Note, the choice of m does not

matter–we only require that tj ∈ Tm
j .) So the product map fn−i : T−i → T ∗

−i satisfies the following

property:

ρn+1
i (s−i, t−i) = ρ∗,n+1

i (s−i, f
n
−i(t−i)).

(This uses Lemmata B.2-B.3.) Thus, for each event En+1
−i ⊆ Xn

i ×Hn
−i,

(ρn+1
i )−1(En+1

−i ) = (id−i × fn−i)
−1((ρ∗,n+1

i )−1(En+1
−i )), (1)

where id−i : S−i → S−i is the identity map.

Fix some ti ∈ T 1
i . Let νi ∈ ∆(S−i × T ∗

−i) be the image measure of βi(ti) under (id−i × fn−i). By

construction, there exists a type t∗i ∈ T ∗,1
i with β∗

i (t
∗
i ) = νi. It remains to show that δ∗,n+1

i (t∗i ) = δn+1
i (ti).

Fix some event En+1
−i ⊆ Xn

i ×Hn
−i. Note,

δ∗,n+1
i (t∗i )(E

n+1
−i ) = νi

(
(ρ∗,n+1

i )−1(En+1
−i )

)
= βi(ti)

(
(id−i × fn−i)

−1
(
(ρ∗,n+1

i )−1(En+1
−i )

))
= βi(ti)

(
(ρn+1

i )−1(En+1
−i )

)
= δn+1

i (ti))(E
n+1
−i ),

where the third line uses Equation 1. This establishes δ∗,n+1
i (t∗i ) = δn+1

i (ti).

Next consider m ≥ 2. By the induction hypothesis and Lemmata B.2-B.3, for each t−i ∈ Tm−1
−i ,

ρn+1
i (s−i, t−i) = ρ∗,n+1

i (s−i, f
m−1,n
−i (t−i)).

Thus, for each event En+1
−i ⊆ Xn

i ×Hn
−i,

(ρn+1
i )−1(En+1

−i ) ∩ (S−i × Tm−1
−i ) = (id−i × fm−1,n

−i )−1((ρ∗,n+1
i )−1(En+1

−i ) ∩ (S−i × T ∗,m−1
−i )). (2)

Fix some ti ∈ Tm
i . Let νi ∈ ∆(S−i × T ∗

−i) satisfy the following: For each E∗
−i ⊆ S−i × T ∗,m−1

−i ,

νi(E
∗
−i) = βi(ti)((id−i × fm−1,n

−i )−1(E∗
−i))
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and νi(S−i × (T ∗
−i\T

∗,m−1
−i )) = 0. Since βi(ti)(S−i × Tm−1

−i ) = 1, this is a well-defined measure in ∆(S−i ×
T−i) and, moreover, νi(S−i×T ∗,m−1

−i ) = 1. By construction, there exists a type t∗i ∈ T ∗,m
i with β∗

i (t
∗
i ) = νi.

It remains to show that δ∗,n+1
i (t∗i ) = δn+1

i (ti).

Fix some event En+1
−i ⊆ Xn

i ×Hn
−i. Note,

δ∗,n+1
i (t∗i )(E

n+1
−i ) = νi((ρ

∗,n+1
i )−1(En+1

−i ))

= νi

(
((ρ∗,n+1

i )−1(En+1
−i )) ∩ (S−i × T ∗,m−1

−i )
)

= βi(ti)
(
(id−i × fm−1,n

−i )−1
(
(ρ∗,n+1

i )−1(En+1
−i )) ∩ (S−i × T ∗,m−1

−i )
))

= βi(ti)
(
(ρn+1

i )−1(En+1
−i ) ∩ (S−i × Tm−1

−i )
)

= βi(ti)
(
(ρn+1

i )−1(En+1
−i )

)
= δn+1

i (ti)(E
n+1
−i ),

where the second line uses the fact that νi(S−i × T ∗,m−1
−i ) = 1, the third line follows from the construction

of νi, the fourth line follows from Equation 2, and the fifth line uses the fact that βi(ti)(S−i × Tm−1
−i ) = 1.

This establishes δ∗,n+1
i (t∗i ) = δn+1

i (ti).

Remark B.1. [TODO: Insert discussion of the difficulty in extending the previous result to any level-k type

structure]

Appendix C Proofs for Sections 5-6

C.1 Proofs for Section 5

Lemma C.1. Let Ji : Si ↠ ∆(S−i) be a correspondence with

Ji(si) = {νi ∈ ∆(S−i) : si ∈ BRi[νi]}.

Then Ji(si) is closed-valued. Moreover, if si ∈ S1
i , then Ji(si) is non-empty valued.

Proof. Let π̂i : Si ×∆(S−i) → R be defined by

π̂i(si, νi) =
∑
S−i

πi(si, s−i)νi(s−i).

It follows from Theorem 15.3 in Aliprantis and Border (2007) and the fact that Si is finite that π̂i is

continuous. Moreover, since Si × ∆(S−i) is compact, π̂i is bounded. As a consequence, the function

π̃i : Si × Si ×∆(S−i) → R defined by

π̃i(si, ri, νi) = π̂i(si, νi)− π̂i(ri, νi)

is continuous and bounded.

Now, fix a sequence (ν1i , ν
2
i , . . .) with each νki ∈ Ji(si). Then, for each ν

k
i and each ri ∈ Si, π̃i(si, ri, ν

k
i ) ≥

0. If (ν1i , ν
2
i , . . .) converges to νi then, for each ri ∈ Si, π̃i(si, ri, νi) ≥ 0. (See Theorem 15.3 in Aliprantis

and Border, 2007, which uses the fact that π̃i is continuous and bounded.) Thus, νi ∈ Ji(si) and Ji(si) is

closed.
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Lemma C.2.

(i) If E−i is Borel then Bi(E−i) is Borel.

(ii) If E−i = ∅, then Bi(E−i) = ∅ and so Borel.

Proof. Part (i) follows from Lemma 15.16 in Aliprantis and Border (2007) and the fact that βi is measur-

able. Part (ii) is immediate.

Lemma C.3. For each m, the sets Rm
i are Borel.

Proof. The proof is by induction on m.

m = 1: Fix a strategy si and let

O(si) = {νi ∈ ∆(S−i × T−i) : si ∈ BRi[marg S−i
νi]}.

By Lemma C.1 and Lemma A.1, O[si] is closed. From this and the fact that βi is measurable, each

{si} × β−1
i (Ô[si]) is Borel. Now observe that

R1
i =

⋃
si∈Si

(
{si} × β−1

i (O(si))
)

and, therefore, R1
i is Borel.

m ≥ 2: Assume that, for each i, Rm
i is Borel. As such, each Rm

−i is also Borel. So by Lemma C.2(i), Rm
i

is Borel.

C.2 Proof of Theorem 6.1

Proposition C.1. Fix an epistemic game (G, T ) where T is a level-k type structure for µ. Then:

(i) proj Si

(
R1

i ∩ (Si × T 1
i )
)
= L1

i [µ], and

(ii) for each k ≥ 1, proj Si

(
Rk

i ∩ (Si × Tm
i )

)
⊆ Lm

i .

Proof. Begin with part (i). Fix some si ∈ proj Si

(
R1

i ∩ (Si × T 1
i )
)
. Then there exists some ti ∈ T 1

i so that

(si, ti) ∈ R1
i . As such, si ∈ BRi[marg S−i

βi(ti)] and marg S−i
βi(ti) = µi. So si ∈ L1

i [µ]. Conversely, fix

si ∈ L1
i [µ]. Then si ∈ BRi[µi] and, for each ti ∈ T 1

i , marg S−i
βi(ti) = µi. Thus, {si}×T 1

i ⊆ R1
i ∩ (Si×T 1

i ).

As such, L1
i [µ] ⊆ proj Si

(
R1

i ∩ (Si × T 1
i )
)
.

The proof of part (ii) is by induction on m. The case of m = 1 follows from part (i). Assume the

claim holds for m. Fix some si ∈ proj Si

(
Rm+1

i ∩ (Si × Tm+1
i )

)
. Then there exists some ti ∈ Tm+1

i so that

(si, ti) ∈ Rm+1
i . As such, si ∈ BRi[marg S−i

βi(ti)]. Moreover, βi(ti)(R
m
−i ∩ (S−i × Tm

−i)) = 1. So, by the

induction hypothesis, marg S−i
βi(ti)(L

m
−i) = 1. As such, si ∈ Lm+1

i .

Proof of Theorem 6.1. Part (i) is Proposition C.1. So we focus on part (ii). Throughout, fix a

complete level-k type structure for µ with covers Ci = {Tm
i : m = 1, 2, . . .} satisfying conditions (i)-(ii)-(iii)

of Definition 4.2. The proof is by induction on m.
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The case of m = 1 is part (i) of Proposition C.1. So, assume the result holds for m. By part (ii) of

Proposition C.1, it suffices to show that

Lm+1
i ⊆ proj Si

(
Rm+1

i ∩ (Si × Tm+1
i )

)
.

Fix si ∈ Lm+1
i . Then there exists some νi ∈ ∆(S−i) such that si ∈ BRi[νi], and νi(L

m
−i) = 1. We will use

νi to construct a ν̂i ∈ ∆(S−i × T−i) so that: (i) marg S−i
ν̂i = νi, (ii) ν̂i(S−i × Tm

−i) = 1, and (iii) for each

n ≤ m, ν̂i(R
n
−i) = 1. We then show that this suffices to deliver the result.

Step 1: By the induction hypothesis, for each player j, there exists a mapping τmj : Lm
j → Tm

j that satisfies

the following property: For each sj ∈ Lm
j , (sj , τ

m
j (sj)) ∈ Rm

j ∩ (Sj × Tm
j ). Let τm−i : L

m
−i → Tm

−i be the

associated product map. For each s−i ∈ Lm
−i, set ν̂(s−i, τ

m
−i(s−i)) = ν(s−i) and, for each (s−i, t−i) ∈

S−i × T−i\(gr(τm−i)), set ν̂(s−i, t−i) = 0. This gives a ν̂i ∈ ∆(S−i × T−i). By the construction and the fact

that Tm
−i is Borel, we have ν̂i(S−i × Tm

−i) = 1. By the construction and the fact that each Rn
−i is Borel, we

have that, for each n ≤ m, ν̂i(R
n
−i) = 1.

Step 2: By completeness, there exists a type ti ∈ Tm+1
−i with βi(ti) = ν̂i. Since marg S−i

βi(ti) = νi and

si ∈ BRi[νi], it follows that (si, ti) ∈ R1
i . Since, for each n ≤ m, βi(ti)(R

n
−i) = 1, (si, ti) ∈ Rm+1

i .

C.3 Result for Section 6.3

Lemma C.4. Fix an anchor µ. For each m ≥ 1 and each n ≥ m, Ln
i ⊆ Sm

i .

Proof. The proof is by induction on m. For m = 1 and each n ≥ 1, it is immediate that Ln
i ⊆ S1

i ; thus,

the result holds for m = 1. Suppose the result holds for m ≥ 1. Fix n ≥ m and note that si ∈ Ln+1
i if

and only if si is a best response under some νi ∈ ∆(S−i) with νi(L
n
−i) = 1. By the induction hypothesis,

Ln
−i ⊆ Sm

−i and so νi(S
m
−i) = 1. Thus, si ∈ Sm+1

−i .

Appendix D Proofs for Section 8

D.1 Proof of Proposition 8.1

The proof is analogous to Example 8.1: Since each |Si| ≥ 2, take {2i,3i} ⊆ Si. Fix a non-degenerate

anchor µ, i.e., an anchor where each µi does not assign probability 1 to some strategy. Then, for each i,

there exists some strategy s−i ∈ S−i so that µi(s−i) ∈ (0, 1). Without loss of generality, suppose that, for

each i, this strategy profile is 2−i.

Inductively define hmi,2 so that h1i,2(2−i) = 1 and hm+1
i,2 (2−i, . . . , h

m
−i,2) = 1. Set hi,2 = (h1i,2, h

2
i,2, . . .).

Likewise, for each player i, inductively define hmi as follows: First, set h1i = µi. Second, h
m
i (2−i, h

1
−i,2, . . . , h

m
−i,2) =

p ∈ (0, µi(2−i)]. (Note, p does not depend on m.) Set hi = (h1i , h
2
i , . . .). Proposition 8.1 will follow from

the following two Lemmata.

Lemma D.1. Fix a type structure T = (S−i, Ti, βi : i ∈ I). If there exists a type ti ∈ Ti with δi(ti) = hi,

then there must be a type t−i,2 ∈ T−i with δ−i(t−i,2) = h−i,2.
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Proof. Suppose there is a type ti ∈ Ti with δi(ti) = hi. Note, for each m ≥ 1,

hm+1
i (2−i, h

1
−i,2, . . . , h

m
−i,2) = p

or, equivalently, βi(ti)(E
m+1
i ) = p for

Em+1
i := (ρm+1

i )−1({2−i, h
1
−i,2, . . . , h

m
−i,2}).

Observe that the sets Em
i are decreasing, i.e., for each m ≥ 2, Em+1

i ⊆ Em
i . Since (βi(ti)(E

m
i ) : m ≥ 2) =

(p, p, p, . . .),

p = lim
m→∞

βi(ti)(E
m
i ) = βi(ti)(

⋂
m≥2

Em
i ).

(See, e.g., Theorem 10.8 in Aliprantis and Border (2007).) Thus,⋂
m≥2

Em
i ̸= ∅,

i.e., there exists some type t−i ∈ T−i with δ−i(t−i) = (h1−i,2, h
2
−i,2, . . .), as required.

Lemma D.2. If T = (S−i, Ti, βi : i ∈ I) is a level-k type structure for µ, then there is no type ti,2 ∈ Ti

with δi(ti,2) = hi,2.

Proof. For each i ∈ I, let Ci = {Tm
i : m = 1, 2, . . .} be a Borel cover so that (Ci : i ∈ I) jointly satisfy

conditions (i)-(ii) of Definition 4.1. We will show that, for each m ≥ 1, and each ti ∈ Tm
i , δmi (ti) ̸= hmi,2.

The proof is by induction on m.

The case of m = 1 is immediate: If ti ∈ T 1
i , δ

1
i (ti)(2−i) ̸= 1 and so δ1i (ti) ̸= h1i,2. Suppose then that

the claim holds for m. Fix ti ∈ Tm+1
i . By the induction hypothesis,

(ρm+1
i )−1(S−i × {(h1−i,2, . . . , h

m
−i,2)}) ∩ (S−i × Tm

−i) = ∅.

Since βi(ti)(S−i × Tm
−i) = 1,

βi(ti)((ρ
m+1
i )−1(S−i × {(h1−i,2, . . . , h

m
−i,2)})) = 0

and so δm+1
i (ti) ̸= hm+1

i,2 .

D.2 Properties of Level-k Type Structures

Example D.1. This example shows that, for a given level-k type structure, we may not be able to choose

the cover to be a partition. As such, we may have that a type is both a k-type and an ℓ-type for every

associated cover.

Construct an S-based level-k type structures for µ, viz. T = (S−i, Ti, βi : i ∈ I), as follows: For each i,

take Ti = N+. Choose βi so that it satisfies the following properties. First, marg S−i
βi(ti) = µi if and only

if ti ∈ {1, 3}. Second, Suppmarg T−i
βi(1) = T−i. Third, βi(2)(S−i ×{1}) = βi(2)(S−i ×{3}) = 1

2 . Fourth,

for each k ≥ 2, βi(k + 1)(S−i × {k}) = 1.
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This is a level-k type structure for µ. We can choose the cover {Tm
i : k = 1, 2, . . .} so that T 1

i = {1, 3}
and, for each k ≥ 2, Tm

i = {k}. This cover is non-partitional. However, any cover must be non-partitional.

To see this, fix a cover {Uk
i : k = 1, 2, . . .}. Since Suppmarg T−i

βi(1) = T−i, it must be that 1 ∈ U1
i . So,

U1
i is either {1} or {1, 3}. If U1

i = {1} then U2
−i = ∅. So we must have U1

i = {1, 3} and, from this, it

follows that U2
i = {2}. But this implies that U3

i = {3}. Thus, any cover must have U1
i ∩ U3

i ̸= ∅. 2

Example D.2. This example shows that, for any anchor µ, there may be a level-k type structure for µ

where the associated Borel cover is not unique. As a result, a type ti may be a k-type for one associated

cover and an ℓ-type for another associated cover, despite the fact that k ̸= ℓ.

Fix an anchor µ. Construct a type structure as follows: For each i, take Ti = N+. Choose βi so

that it satisfies the following properties. First, marg S−i
βi(ti) = µi if and only if ti ∈ {1, 3}. Second,

Suppmarg T−i
βi(1) = T−i. Third, for each k ≥ 1, βi(k + 1)(S−i × {k}) = 1.

This is a level-k type structure for µ. Notice, we can take the cover {Tm
i : k = 1, 2, . . .} so that Tm

i = {k}
for each k. This cover is a partition. However, there is a second non-partitional cover {Uk

i : k = 1, 2, . . .}
with U1

i = {1, 3} and, for each k ≥ 2, Uk
i = {k}. Under the first cover, 3 is a 3-type, while under the

second cover, 3 is both a 1-type and a 3-type. 2

D.3 Finite-Order Belief Type Structures

Definition D.1. A finitary S-based type structure is some T̃ = (S−i, T̃i, β̃i : i ∈ I) where,

(i) for each i, T̃i is a metrizable set of types for i with T̃i ∩ {d} = ∅ and

(ii) for each i, β̃i : T̃i → ∆(S−i × T̃−i) ∪ {d} is a measurable belief map for i.

Say (si, t̃i) is rational if β̃i(t̃i) ∈ ∆(S−i× (T̃−i ∪{d})) and satisfies the condition in Definition 5.1. Say

t̃i believes an event E−i if β̃i(t̃i) ∈ ∆(S−i × (T̃−i ∪ {d})) and t̃i satisfies the condition in Definition 5.2.

We define RmBR analogously to Definition 5.3. In particular, we write R̃1
i for the set of rational

strategy-type pairs and R̃m+1
i for the set of strategy-type pairs which satisfy rationality and mth-order

belief of rationality.

Each ordinary type structure is also a finitary S-based type structure. With this in mind, we focus

on showing that the RmBR predictions of a finitary type structure can be replicated in an ordinary type

structure. In doing so, we will focus on type structures that are first-order complete: Call T̃ first-order

complete if, for each νi ∈ ∆(S−i), there exists some t̃i ∈ T̃i with marg S−i
β̃i(t̃i) = νi.

Proposition D.1. Fix a game with no weakly dominant strategy. Let T̃ = (S−i, T̃i, β̃i : i ∈ I) be a finitary

S-based type structure that is first-order complete. Then, there exists an ordinary S-based type structure

T = (S−i, Ti, βi : i ∈ I) with each Ti ⊆ T̃i so that

(i) for each ti ∈ Ti, (si, ti) ∈ Rm
i if and only if (si, ti) ∈ R̃m

i , and

(ii) proj Si
Rm

i = proj Si
R̃m

i .

To prove Proposition D.1, we will make use of the following fact: If a game has no weakly dominant

strategy for i, then we can find a mapping fi : Si → ∆(S−i) so that, for each si ∈ Si, si ̸∈ BRi[fi(si)]. We

make use of these mappings below.
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Proof of Proposition D.1. Fix a game with no weakly dominant strategy and an associated finitary

S-based type structure that is first-order complete, viz. T̃ . Since there are no weakly dominant strategies,

we can find mappings fi : Si → ∆(S−i) so that, for each si ∈ Si, si ̸∈ BR[fi(si)]. Since T is first-order

complete, there are mappings τi : Si → T̃i such that marg S−i
β̃i(τi(si)) = fi(si). Since Si is finite, τi is

measurable.

With this background, we can construct T . Let Ti = T̃i\{ti ∈ T̃i : β̃i(ti) = d}. Observe that Ti is a

Borel subset of T̃i. (This follows from the fact that β̃i is measurable.) Endow Ti with the relative topology

and note that it is metrizable.

Observe that, by construction, τi(Si) ⊆ Ti. As such, write τ i : Si → Ti for the restriction of τi to the

range Ti. Note that τ i is also measurable. Write (id−i × τ−i) : S−i × S−i → S−i × T−i for the associated

product mappings. That is, (id−i × τ−i) is a mapping where, for each s−i ∈ S−i, (id−i × τ−i)(s−i, s−i) =

(s−i, τ−i(s−i)). Observe that, since id−i and τ−i are both measurable, (id−i × τ−i) is measurable.

We now construct βi. To do so, it will be convenient to derive the mapping from two auxiliary mappings,

β◦
i and β⋄

i . Let T
◦
i be the set of ti ∈ Ti with β̃i(ti)(S−i×T−i) = 1. Let T ⋄

i = Ti\T ◦
i . Since β̃i is measurable,

both T ◦
i and T ⋄

i are measurable. Take β◦
i : T ◦

i → ∆(S−i × T−i) so that, for each ti ∈ T ◦
i , β

◦
i (ti) is the

restriction of β̃i(ti) to S−i × T−i. Note that β◦
i is measurable. Take β⋄

i : T ⋄
i → ∆(S−i × T−i) so that,

for each ti ∈ T ⋄
i , β

⋄
i (ti) is the image measure of marg S−i

β̃i(ti) under id−i × τ−i. Note, β⋄
i is measurable.

Finally, let

βi(ti) =

β◦
i (ti) if ti ∈ T ◦

i ,

β⋄
i (ti) if ti ∈ T ⋄

i .

Note that βi is measurable since T ◦
i , T

⋄
i , β

◦
i , and β

⋄
i are each measurable.

Finally, we show that, for each m ≥ 1 and each ti ∈ Ti, (si, ti) ∈ Rm
i if and only if (si, ti) ∈ R̃m

i . This

will imply that, for each m ≥ 1, proj Si
Rm

i = proj Si
(R̃m

i ∩ (Si × Ti)). Now observe that, for each m ≥ 1,

proj Si
(R̃m

i ∩ (Si × Ti)) = proj Si
R̃m

i . As such, for each m ≥ 1, proj Si
Rm

i = proj Si
R̃m

i .

In fact, we will show a slightly stronger claim:

(i) For each m ≥ 1 and each ti ∈ Ti, (si, ti) ∈ Rm
i if and only if (si, ti) ∈ R̃m

i .

(ii) For each m ≥ 2 and each ti ∈ T ⋄
i , Si × {ti} ∩Rm

i = ∅ and Si × {ti} ∩ R̃m
i = ∅.

The proof is by induction on m.

m = 1: Fix ti ∈ Ti. By construction, marg S−i
β̃i(ti) = marg S−i

βi(ti). As such, (si, ti) ∈ R1
i if and only if

(si, ti) ∈ R̃1
i .

m = 2: Fix ti ∈ Ti. If ti ∈ T ◦
i , then ti believes R1

−i if and only if ti believes R̃1
−i. (This follows from

the construction.) If ti ∈ T ⋄
i , then ti does not believe R̃1

−i. (This follows from the fact that R̃1
−i ∩

(S−i × T̃−i\T−i) = ∅.) Thus, we must show that ti does not believe R1
−i. To see this, observe that

βi(ti)(S−i × τ−i(S−i)) = 1 and, by construction, (S−i × τ−i(S−i)) ∩R1
−i = ∅. As such, ti does not believe

R1
−i.

m ≥ 3: Assume the claim holds for m ≥ 3 and we show that it also holds for m + 1. Fix ti ∈ Ti. If

ti ∈ T ◦
i , then ti believes R

m
−i if and only if ti believes R̃

m
−i. (This follows from the construction.) If ti ∈ T ⋄

i ,
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then by the induction hypothesis, (Si × {ti}) ∩ Rm
i = ∅ and (Si × {ti}) ∩ R̃m

i = ∅. As such, if ti ∈ T ⋄
i ,

(Si × {ti}) ∩Rm+1
i = ∅ and (Si × {ti}) ∩ R̃m+1

i = ∅.

D.4 RmBR Behavior of k-Types

Lemma D.3. Fix an epistemic game (G, T ), where T that is a level-k type structure for µ. If, for each i,

µi(S−i\S1
−i) > 0, then ⋃

k≥m

(
Rm

i ∩ (Si × T k
i )

)
=

⋃
k≥1

(
Rm

i ∩ (Si × T k
i )

)
for each m.

Proof. The proof is by induction on m. For m = 1, the claim is immediate. So suppose that m ≥ 2.

We will show that, for each k < m and each (si, ti) ∈ Si × T k
i , (si, ti) ̸∈ Rk+1

i . From this it follows that

(si, ti) ̸∈ Rm
i and so Rm

i ∩ (Si × T k
i ) = ∅.

The proof is by induction on k. For (si, ti) ∈ Si×T 1
i , marg S−i

βi(ti)(S−i\S1
−i) > 0 and so (si, ti) ̸∈ R2

i .

Assume that the claim holds for k ≤ m − 2. If (si, ti) ∈ Si × T k+1
i , βi(ti)(S−i × T k

−i) = 1 and so, by the

induction hypothesis, βi(ti)(R
k+1
−i ) = 0. Thus, (si, ti) ̸∈ Rk+2

i .

Proof of Lemma 8.1. By Lemma D.3,⋃
k≥m

(
Rm

i ∩ (Si × T k
i )

)
=

⋃
k≥1

(Rm
i ∩ (Si × Tm

i )) = Rm
i ,

from which the claim follows.
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